Skip to main content
Log in

Condensed matter research at the modernized IBR-2 reactor: from functional materials to nanobiotechnologies

  • The issue is devoted to the 60th anniversary of the Joint Institute for Nuclear Research
  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

An overview of the main scientific areas of condensed matter research, which are extended with the use of the IBR-2 high-flux research reactor, is presented. It is demonstrated that the spectrometer facility of the upgraded reactor has great potential for studying the structural, magnetic, and dynamical properties of novel functional materials and nanobiosystems, which ensures the leading position of the Joint Institute for Nuclear Research in neutron research of condensed matter for the long-term prospect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. L. Aksenov, “Neutron physics entering the XXI century,” Phys. Part. Nucl. 31 6, 651–673 (2000).

    Google Scholar 

  2. A. V. Belushkin, D. P. Kozlenko, and A. V. Rogachev, “Synchrotron and neutron-scattering methods for studies of properties of condensed matter: Competition or complementarity?,” J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 5 5, 828–855 (2011).

    Article  Google Scholar 

  3. Proposals to the Program of Development of the Spectrometer Complex at the IBR-2 Reactor for 2015–2020, edited by D. P. Kozlenko, composed by Yu. E. Gorshkova (JINR, Dubna, 2014) 102 p.

  4. V. L. Aksenov and A. M. Balagurov, “Neutron time-offlight diffractometry,” Physics–Uspekhi 39 9, 897–924 (1996).

    ADS  Google Scholar 

  5. H. Chander, “Development of nanophosphors—A review,” Mater. Sci. Eng. R 49, 113–155 (2005).

    Article  Google Scholar 

  6. S. W. Allison, J. R. Buczyna, R. A. Hansel, D. G. Walker, and G. T. Gillies, “Temperature-dependent fluorescence decay lifetimes of the phosphor Y3(Al0. 5Ga0. 5)5O12:Ce 1%,” J. Appl. Phys. 105, 036105 (2009).

    Article  ADS  Google Scholar 

  7. M. Globus, B. Grinyov, and J. K. Kim, Inorganic Scintillators for Modern and Traditional Applications (Institute for Single Crystals Publ. House, Kharkiv, 2005).

    Google Scholar 

  8. Soft Chemistry Routes to New Materials: Chimie Douce: Proceedings of the International Symposium on Soft Chemistry Routes to New Materials (Nantes, France, Sep. 6–10, 1993), Ed. by J. Rouxel, M. Tournoux, and R. Brec (Trans. Tech. Pubs, Aedermannsdorf, Switzerland, 1994).

  9. S. E. Kichanov, E. V. Frolova, G. P. Shevchenko, D. P. Kozlenko, A. V. Belushkin, E. V. Lukin, G. E. Malashkevich, S. K. Rakhmanov, V. P. Glazkov, and B. N. Savenko, “Investigation of structural features of the Y3Al5O12: Ce3+/Lu2O3 crystal phosphors formed by the colloidal chemical method,” Phys. Solid State 55 4, 813–820 (2013).

    Article  ADS  Google Scholar 

  10. S. E. Kichanov, G. P. Shevchenko, E. V. Tretyak, D. P. Kozlenko, G. E. Malashkevich, A. V. Belushkin, and B. N. Savenko, “The structural and luminescent properties of Lu3Al5O12:Ce3++Lu2O3 crystal phosphors prepared by colloid chemical synthesis,” J. Alloy Compd 613, 238–243 (2014).

    Article  Google Scholar 

  11. S. A. Samoylenko, E. V. Tret’yak, G. P. Shevchenko, S. E. Kichanov, D. P. Kozlenko, G. E. Malashkevich, A. P. Stupak, and B. N. Savenko, “Crystal structure and optical properties of Lu3Al5O12:Ce3+ obtained by a colloidal-chemical synthesis method,” J. Appl. Spectros. 81 1048–1055 (2015).

    Article  ADS  Google Scholar 

  12. A. M. Balagurov and G. M. Mironova, “Neutron diffraction investigations in real time,” Kristallografiya 36, 314–325 (1991).

    Google Scholar 

  13. A. M. Balagurov, G. M. Mironova, V. E. Novozchilov, A. I. Ostrovnoy, V. G. Simkin, and V. B. Zlokazov, “The application of the neutron time-of-flight technique for real-time diffraction studies,” J. Appl. Crystallogr. 24, 1009–1014 (1991).

    Article  Google Scholar 

  14. I. A. Bobrikov, A. M. Balagurov, C.-W. Hu, C.-H. Lee, T.-Y. Chen, D. Sangaa, and D. A. Balagurov, “Structural evolution in LiFePO4-based battery materials: Insitu and ex-situ time-of-flight neutron diffraction study,” J. Power Sources 258, 356–364 (2014).

    Article  ADS  Google Scholar 

  15. A. M. Balagurov, I. A. Bobrikov, N. Yu. Samoylova, O. A. Drozhzhin, and E. V. Antipov, “Neutron scattering for analysis of processes in lithium-ion batteries,” Russ. Chem. Rev. 83 12, 1120–1134 (2014).

    Article  ADS  Google Scholar 

  16. A. M. Balagurov, I. A. Bobrikov, G. D. Bokuchava, V. V. Zhuravlev, and V. G. Simkin, “Correlation Fourier diffractometry: 20 years of experience at the IBR-2 reactor,” Phys. Part. Nucl. 46 3, 249–276 (2015).

    Article  Google Scholar 

  17. V. L. Aksenov and A. M. Balagurov, “Neutron diffraction on pulsed sources,” Phys. Usp. 59 (3) (2016).

  18. G. M. Mironova, Capabilities of neutron diffraction in real time at the IBR-2 pulsed reactor, Soobshch. OIYaI, R13-88-326 (JINR, Dubna, 1988).

    Google Scholar 

  19. G. A. Smolenskii and I. E. Chupis, “Ferroelectromagnetics,” Usp. Fiz. Nauk 137, 415–448 (1982).

    Article  Google Scholar 

  20. M. Fiebig, “Revival of magnetoelectric effect,” J. Phys. D: Appl. Phys. 38, R123–R152 (2005).

    Article  ADS  Google Scholar 

  21. V. L. Aksenov, A. M. Balagurov, V. P. Glazkov, D. P. Kozlenko, I. V. Naumov, B. N. Savenko, D. V. Sheptyakov, V. A. Somenkov, A. P. Bulkin, V. A. Kudryashev, and V. A. Trounov, “DN-12 time of flight high pressure neutron spectrometer for investigation of microsamples,” Physica B 265, 258–262 (1999).

    Article  ADS  Google Scholar 

  22. S. A. Gridnev and A. A. Kamynin, “Specific features of the polarization in the PbFe1/2Nb1/2O3 ferroelectric,” Phys. Solid State 54 5, 1018–1020 (2012).

    Article  ADS  Google Scholar 

  23. D. P. Kozlenko, S. E. Kichanov, E. V. Lukin, N. T. Dang, L. S. Dubrovinsky, H.-P. Liermann, W. Morgenroth, A. A. Kamynin, S. A. Gridnev, and B. N. Savenko, “Pressure-induced polar phases in relaxor multiferroic PbFe0.5Nb0.5O3,” Phys. Rev. B 89, 174107 (2014).

    Article  ADS  Google Scholar 

  24. D. P. Kozlenko, S. E. Kichanov, S. Li, J.-G. Park, V. P. Glazkov, and B. N. Savenko, “High-pressure effect on the crystal and magnetic structures of the frustrated antiferromagnet YMnO3,” JETP Lett. 82 4, 193–197 (2005).

    Article  ADS  Google Scholar 

  25. D. P. Kozlenko, I. Mirebeau, J.-G. Park, I. N. Goncharenko, S. Lee, J. Park, and B. N. Savenko, “High pressure induced spin liquid phase of multiferroic YMnO3,” Phys. Rev. B 78, 054401 (2008).

    Article  ADS  Google Scholar 

  26. D. P. Kozlenko, A. A. Belik, S. E. Kichanov, I. Mirebeau, D. V. Sheptyakov, Th. Straessle, O. L. Makarova, A. V. Belushkin, B. N. Savenko, and E. Takayama- Muromachi, “Competition between ferromagnetic and antiferromagnetic ground states in BiMnO3 at high pressures,” Phys. Rev. B 82, 014401 (2010).

    Article  ADS  Google Scholar 

  27. D. P. Kozlenko, A. A. Belik, A. V. Belushkin, E. V. Lukin, W. G. Marshall, B. N. Savenko, and E. Takayama-Muromachi, “Antipolar phase in multiferroic BiFeO3 at high pressure,” Phys. Rev. B 84, 094108 (2011).

    Article  ADS  Google Scholar 

  28. D. P. Kozlenko, S. E. Kichanov, E. V. Lukin, N. T. Dang, L. S. Dubrovinsky, E. A. Bykova, K. V. Kamenev, H.-P. Liermann, W. Morgenroth, A. Ya. Shapiro, and B. N. Savenko “Effect of high pressure on the crystal structure, magnetic, and vibrational properties of multiferroic RbFe(MoO4)2,” Phys. Rev. B 87, 014112 (2013).

    Article  ADS  Google Scholar 

  29. D. P. Kozlenko, N. T. Dang, S. H. Jabarov, A. A. Belik, S. E. Kichanov, E. V. Lukin, C. Lathe, L. S. Dubrovinsky, V. Yu. Kazimirov, M. B. Smirnov, B. N. Savenko, A. I. Mammadov, E. Takayama-Muromachi, and L. H. Khiem, “Structural polymorphism in multiferroic BiMnO3 at high pressures and temperatures,” J. Alloys Compd 585, 741–747 (2014).

    Article  Google Scholar 

  30. D. P. Kozlenko, N. T. Dang, S. E. Kichanov, E. V. Lukin, A. M. Pashayev, S. G. Jabarov, L. S. Dubrovinsky, H.-P. Liermann, W. Morgenroth, A. I. Mammadov, R. Z. Mehdiyeva, V. G. Smotrakov, and B. N. Savenko, “Competing magnetic and structural states in multiferroic YMn2O5 at high pressure,” Phys. Rev. B 92, 134409 (2015).

    Article  ADS  Google Scholar 

  31. V. Lauter-Pasyuk, H. J. Lauter, B. Toperverg, L. Romashev, M. Milyaev, A. Petrenko, V. Aksenov, and V. Ustinov, “Ordering in magnetic multilayers by off-specular neutron scattering,” J. Magnetism and Magn. Materials 258–259, 382–387 (2003).

    Article  Google Scholar 

  32. Yu. N. Khaydukov, B. Nagy, J.-H. Kim, T. Keller, A. Rühm, Yu. V. Nikitenko, K. N. Zhernenkov, J. Stahn, L. F. Kiss, A. Csik, L. Bottyán, and V. L. Aksenov, “On the feasibility to study inverse proximity effect in a single S/F bilayer by polarized neutron reflectometry,” JETP Lett. 98 2, 107–110 (2013).

    Article  ADS  Google Scholar 

  33. V. L. Aksenov and Yu. V. Nikitenko, “Polarized neutron reflectometry at the IBR-2 pulsed reactor,” Crystallogr. Rep. 52 3, 540–549 (2007).

    Article  ADS  Google Scholar 

  34. V. L. Aksenov and Yu. V. Nikitenko, “Neutron interference at grazing incidence reflection. Neutron standing waves in multilayered structures: Applications, status, perspectives,” Physica B 297, 101–112 (2001).

    Article  ADS  Google Scholar 

  35. Yu. N. Khaydukov, V. L. Aksenov, Yu. V. Nikitenko, K. N. Zhernenkov, B. Nagy, A. Teichert, R. Steitz, A. Rühm, and L. Bottyán, “Magnetic proximity effects in V/Fe superconductor/ferromagnet single bilayer revealed by waveguide-enhanced polarized neutron reflectometry,” J. Supercond. Novel Magn. 24, 961–968 (2011).

    Article  Google Scholar 

  36. J. W. P. Schmelzer and T. V. Tropin, “Kinetic criteria of glass-formation, pressure dependence of the glass-transition temperature, and the Prigogine-Defay ratio,” J. Non-Cryst. Solids 407, 170–178 (2015).

    Article  ADS  Google Scholar 

  37. T. V. Tropin, G. Schulz, J. W. P. Schmelzer, and C. Schick, “Heat capacity measurements and modeling of polystyrene glass transition in a wide range of cooling rates,” J. Non-Cryst. Solids 409, 63–75 (2015).

    Article  ADS  Google Scholar 

  38. V. Lauter-Pasyuk, H. Lauter, G. Gordeev, P. Müller- Buschbaum, B. P. Toperverg, W. Petry, M. Jernenkov, A. Petrenko, and V. Aksenov, “Parallel and perpendicular lamellar phases in copolymer-nanoparticle multilayer structures,” Physica B 350 (1–3), E939–E942 (2004).

    Article  ADS  Google Scholar 

  39. T. V. Budkevich, A. A. Timchenko, E. I. Tiktopulo, B. S. Negrutskii, V. F. Shalak, Z. M. Petrushenko, V. L. Aksenov, R. Willumeit, J. Kohlbrecher, I. N. Serdyuk, and A. V. El’skaya, “Extended conformation of mammalian translation elongation factor 1A in solution,” Biochemistry 41, 15342–15349 (2002).

    Article  Google Scholar 

  40. M. A. Kiselev, “Methods for lipid nanostructure investigation at neutron and synchrotron sources,” Phys. Part. Nucl. 42, 302–331 (2011).

    Article  Google Scholar 

  41. M. A. Kiselev, E. V. Zemlyanaya, E. I. Zhabitskaya, and V. L. Aksenov, “Investigation of the structure of unilamellar dimyristoylphosphatidylcholine vesicles in aqueous sucrose solutions by small-angle neutron and X-ray scattering,” Crystallogr. Rep. 60 1, 143–147 (2015).

    Article  ADS  Google Scholar 

  42. M. V. Avdeev, V. L. Aksenov, and L. A. Bulavin, “Neutron Scattering in Nanosystems”, in Nanoscience and Nanotechnologies: Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO, expanded edition (Magister-Press, Moscow, 2010; Eolss Publishers, Oxford, UK (in press)).

    Google Scholar 

  43. M. V. Avdeev and V. A. Aksenov, “Small-angle neutron scattering in structure research of magnetic fluids,” Phys. Usp. 53 971–993 (2010).

    Article  ADS  Google Scholar 

  44. Yu. I. Prylutskyy, V. I. Petrenko, O. I. Ivankov, O. A. Kyzyma, L. A. Bulavin, O. O. Litsis, M. P. Evstigneev, V. V. Cherepanov, A. G. Naumovets, and U. Ritter, “On the origin of C60 fullerene solubility in aqueous solution,” Langmuir 30 14, 3967–3970 (2014).

    Article  Google Scholar 

  45. M. V. Avdeev, V. L. Aksenov, O. V. Tomchuk, L. A. Bulavin, V. M. Garamus, and E. Osawa, “The spatial diamond–graphite transition in detonation nanodiamond as revealed by small-angle neutron scattering,” J. Phys.: Condens. Matter 25, 445001 (2013).

    ADS  Google Scholar 

  46. K. Drużbicki and I. Natkaniec, “Vibrational properties of water retained in graphene oxide”, Chem. Phys. Lett. 600 106–111 (2014).

  47. L. Melníková, V. I. Petrenko, M. V. Avdeev, V. M. Garamus, L. Almásy, O. I. Ivankov, L. A. Bulavin, Z. Mitróová, and P. Kopčanský, “Effect of iron oxide loading on magnetoferritin structure in solution as revealed by SAXS and SANS,” Colloids Surf. B 123, 82–88 (2014).

    Article  Google Scholar 

  48. P. Kopčanský, K. Siposova, L. Melnikova, Z. Bednarikova, M. Timko, Z. Mitróová, A. Antosova, V. M. Garamus, V. I. Petrenko, M. V. Avdeev, and Z. Gazova, “Destroying activity of magnetoferritin on lysozyme amyloid fibrils,” J. Magnetism and Magn. Materials 377, 267–271 (2015).

    Article  ADS  Google Scholar 

  49. G. D. Bokuchava, I. V. Papushkin, and P. I. Petrov, “Residual stress study by neutron diffraction in the Charpy specimens reconstructed by various welding methods,” Comptes Rendus de l’Académie Bulgare des Sciences 67 6, 763–768 (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Aksenov.

Additional information

Original Russian Text © V.L. Aksenov, A.M. Balagurov, D.P. Kozlenko, 2016, published in Fizika Elementarnykh Chastits i Atomnogo Yadra, 2016, Vol. 47, No. 4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aksenov, V.L., Balagurov, A.M. & Kozlenko, D.P. Condensed matter research at the modernized IBR-2 reactor: from functional materials to nanobiotechnologies. Phys. Part. Nuclei 47, 627–646 (2016). https://doi.org/10.1134/S106377961604002X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377961604002X

Navigation