Skip to main content
Log in

Effect of properties of superheavy nuclei on their production and decay

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

Properties and stability of superheavy nuclei resulting from hot fusion are discussed. It is shown that the microscopic–macroscopic approach allows obtaining the closed proton shell at Z ≥ 120. Isotopic trends of K-isomeric states in superheavy nuclei are predicted. Evaporation residue cross sections in hot fusion reactions are calculated using the predicted properties of superheavy nuclei. Interruption of α decay chains by spontaneous fission is analyzed. Alpha decay chains through isomeric states are considered. Internal level densities in superheavy nuclei are microscopically calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Yu. Ts. Oganessian et al., “Search for new isotopes of element 112 by irradiation of 238U with 48Ca,” Eur. Phys. J. A 5, 63 (1999).

    Article  ADS  Google Scholar 

  2. Yu. Ts. Oganessian et al., “Synthesis of superheavy nuclei in the 48Ca + 244Pu reaction,” Phys. Rev. Lett. 83, 3154 (1999).

    Article  ADS  Google Scholar 

  3. Yu. Ts. Oganessian et al., “Synthesis of superheavy nuclei in the 48Ca + 244Pu reaction: 248114,” Phys. Rev. C 62, 041604 (2000).

    Article  ADS  Google Scholar 

  4. Yu. Ts. Oganessian et al., “Observation of the decay of 292116,” Phys. Rev. C 63, 011301(R) (2001).

    Article  ADS  Google Scholar 

  5. Yu. Ts. Oganessian et al., “Experiments on the synthesis of element 115 in the reaction 243Am (48Ca, xn)115–x291,” Phys. Rev. C 69, 021601 (2004).

    Article  ADS  Google Scholar 

  6. Yu. Ts. Oganessian et al., “Measurements of cross sections for the fusion-evaporation reactions 244Pu(48Ca, xn)292–x114 and 245Cm (48Ca, xn) 293–x116,” Phys. Rev. C 69, 054607 (2004).

    Article  ADS  Google Scholar 

  7. Yu. Ts. Oganessian et al., “Measurements of cross sections and decay properties of the isotopes of elements 112, 114, and 116 produced in the fusion reactions 233, 238U, 242Pu, and 248Cm + 48Ca,” Phys. Rev. C 70, 064609 (2004).

    Article  ADS  Google Scholar 

  8. Yu. Ts. Oganessian et al., “Synthesis of elements 115 and 113 in the reaction 243Am + 48Ca,” Phys. Rev. C 72, 034611 (2005).

    Article  ADS  Google Scholar 

  9. Yu. Ts. Oganessian et al., “Synthesis of the isotopes of elements 118 and 116 in the 249Cf and 245Cm + 48Ca fusion reactions,” Phys. Rev. C 74, 044602 (2006).

    Article  ADS  Google Scholar 

  10. Yu. Ts. Oganessian, “Synthesis and decay properties of superheavy elements,” Pure Appl. Chem. 78, 889 (2006).

    Article  Google Scholar 

  11. Yu. Ts. Oganessian et al., “Synthesis of the isotope 113 in the 237Np + 48Ca fusion reaction,” Phys. Rev. C 76, 011601 (2007).

    Article  ADS  Google Scholar 

  12. Yu. Ts. Oganessian, “Heaviest nuclei from Ca-induced reactions,” J. Phys. G 34, R165 (2007).

    Article  ADS  Google Scholar 

  13. Yu. Ts. Oganessian et al., “Synthesis of a new element with atomic number Z = 117,” Phys. Rev. Lett. 104, 142502 (2010).

    Article  ADS  Google Scholar 

  14. Yu. Ts. Oganessian et al., “Investigation of the 243Am + 48Ca reaction products previously observed in the experiments on elements 113, 115, and 117,” Phys. Rev. C 87, 014302 (2013).

    Article  ADS  Google Scholar 

  15. Yu. Ts. Oganessian et al., “Experimental studies of the 249Bk + 48Ca reaction including decay properties and excitation function for isotopes of element 117, and discovery of the new isotope 277Mt,” Phys. Rev. C 87, 054621 (2013).

    Article  ADS  Google Scholar 

  16. W. Loveland et al., “Search for the production of element 112 in the 48Ca + 238U reaction,” Phys. Rev. C 66, 044617 (2002).

    Article  ADS  Google Scholar 

  17. K. E. Gregorich et al., “Attempt to confirm superheavy element production in the 48Ca + 238U reaction,” Phys. Rev. C 72, 014605 (2005).

    Article  ADS  Google Scholar 

  18. A. B. Yakushev et al., “Chemical identification and properties of element 112,” Radiochem. Acta 91, 433 (2003).

    Article  Google Scholar 

  19. R. Eichler et al., “Chemical characterization of element 112,” Nature 447, 72–75 (2007).

    Article  ADS  Google Scholar 

  20. S. Hofmann et al., “The reaction 48Ca + 238U → 112 studied at the GSI–SHIP,” Eur. Phys. J. A 32, 251–260 (2007).

    Article  ADS  Google Scholar 

  21. Ch. Düllmann et al., “Production and decay of element 114: high cross sections and the new nucleus 277Hs,” Phys. Rev. Lett. 104, 252701 (2010).

    Article  ADS  Google Scholar 

  22. J. M. Gates et al., “First superheavy element experiments at the GSI recoil separator TASCA: the production and decay of element 114 in the 244Pu(48Ca, 3–4n) reaction,” Phys. Rev. C 83, 054618 (2011).

    Article  ADS  Google Scholar 

  23. L. Stavsetra, K. E. Gregorich, J. Dvorak, P. A. Ellison, I. Dragojevic, M. A. Garcia, and H. Nitsche, “Independent verification of element 114 production in the 48Ca + 242Pu reaction,” Phys. Rev. Lett. 103, 132502 (2009).

    Article  ADS  Google Scholar 

  24. J. M. Khuyagbaatar et al., “48Ca + 249Bk fusion reaction leading to element Z = 117: long-lived a-decaying Db and discovery of 266Lr,” Phys. Rev. Lett. 112, 172501 (2014).

    Article  ADS  Google Scholar 

  25. S. Hofmann, “Superheavy elements,” Lect. Notes Phys. 764, 203 (2009).

    Article  ADS  Google Scholar 

  26. S. Hofmann et al., “The reaction 48Ca + 248Cm → 296116* studied at the GSI–SHIP,” Eur. Phys. J. A 48, 62 (2012).

    Article  ADS  Google Scholar 

  27. K. Morita et al., “SHE research at RIKEN/GARIS,” in Proceedings of Int. Symposium “Super Heavy Nuclei”, Texas, USA, 2015, p. 8.

    Google Scholar 

  28. K. H. Haba et al., “Production of 262Db in the 248Cm 19F, 262Db reaction and decay properties of 262Db and 258Lr,” Phys. Rev. C 89, 024618 (2014).

    Article  ADS  Google Scholar 

  29. A. Sobiczewski, F. A. Gareev, and B. N. Kalinkin, “Closed shells for Z > 82 and N > 126 in a diffuse potential well,” Phys. Lett. 22, 500–502 (1966).

    Article  ADS  Google Scholar 

  30. W. D. Myers and W. J. Swiatecki, “Nuclear masses and deformations,” Nucl. Phys. 81, 1–58 (1966).

    Article  Google Scholar 

  31. H. Meldner, “Predictions of new magic regions and masses for superheavy nuclei from calculations with realistic shell-model single-particle Hamiltonians,” Ark. Fys. 36 P, 593–600 (1967).

    Google Scholar 

  32. S. G. Nilsson, J. R. Nix, A. Sobiczewski, Z. Szyman-ski, S. Wycech, C. Gustafson, and P. Möller, “On the spontaneous fission of nuclei with Z near 114 and N near 184,” Nucl. Phys. A 115, 545–562 (1968).

    Article  ADS  Google Scholar 

  33. U. Mosel and W. Greiner, “On the stability of superheavy nuclei against fission,” Z. Phys. A 222, 261–282 (1969).

    Article  Google Scholar 

  34. F. O. Fiset and R. J. Nix, “Calculation of half-lives for superheavy nuclei,” Nucl. Phys. A 193, 647–671 (1972).

    Article  ADS  Google Scholar 

  35. P. Möller, S. G. Nilsson, and R. J. Nix, “Calculated ground-state properties of heavy nuclei,” Nucl. Phys. A 229, 292–319 (1974).

    Article  ADS  Google Scholar 

  36. J. Randrup, S. E. Larsson, P. Möller, S. G. Nilsson, K. Pomorski, and A. Sobiczewski, “Spontaneous-fission half-lives for even nuclei with Z = 92,” Phys. Rev. C 13, 229–239 (1976).

    Article  ADS  Google Scholar 

  37. P. Möller and R. J. Nix, “Stability of heavy and superheavy elements,” J. Phys. G: Nucl. Part. Phys. 20, 1681–1747 (1994).

    Article  ADS  Google Scholar 

  38. A. Sobiczewski, “Progress in theoretical understanding of properties of heaviest nuclei,” Phys. Part. Nucl. 25, 295–311 (1994).

    Google Scholar 

  39. R. Smolanczuk, J. Skalski, and A. Sobiczewski, “Spontaneous-fission half-lives of deformed superheavy nuclei,” Phys. Rev. C 52, 1871–1880 (1995).

    Article  ADS  Google Scholar 

  40. I. Muntian, Z. Patyk, and A. Sobiczewski, “Sensitivity of calculated properties of superheavy nuclei to various changes,” Acta Phys. Pol. B. 32, 691–697 (2001); “Fission properties of superheavy nuclei,” Acta Phys. Pol. B 34, 2141–2145 (2003).

    ADS  Google Scholar 

  41. O. Parkhomenko, I. Muntian, Z. Patyk, and A. Sobiczewski, “Nucleon separation energies for heaviest nuclei,” Acta Phys. Pol. B 34, 2153–2158 (2003).

    ADS  Google Scholar 

  42. A. Sobiczewski and K. Pomorski, “Description of structure and properties of superheavy nuclei,” Prog. Part. Nucl. Phys. 58, 292–349 (2007).

    Article  ADS  Google Scholar 

  43. P. Möller and R. J. Nix, “Nuclear Masses from a unified macroscopic–microscopic mode,” At. Data Nucl. Data Tables 39, 213–223 (1988).

    Article  ADS  Google Scholar 

  44. P. Möller, J. R. Nix, W. D. Myers, and W. J. Swiatecki, “Nuclear ground-state masses and deformations,” At. Data Nucl. Data Tables 59, 185–381 (1995).

    Article  ADS  Google Scholar 

  45. I. Muntian, S. Hofmann, Z. Patyk, and A. Sobiczewski, “Properties of heaviest nuclei,” Acta Phys. Pol. B 34, 2073–2082 (2003)

    ADS  Google Scholar 

  46. I. Muntian, Z. Patyk, and A. Sobiczewski, “Calculated masses of heaviest nuclei,” Phys. At. Nucl. 66, 1015–1019 (2003).

    Article  Google Scholar 

  47. A. Parkhomenko and A. Sobiczewski, “Phenomenological formula for a-decay half-lives of heaviest nuclei,” Acta Phys. Pol. B 36, 3095–3108 (2005).

    ADS  Google Scholar 

  48. N. Wang and M. Lin, “Nuclear mass predictions with a radial basis function approach,” Phys. Rev. C 84, 051303(R) (2011).

    Article  ADS  Google Scholar 

  49. K. Rutz, M. Bender, T. Bürvenich, T. Schilling, P.-G. Reinhard, J. A. Maruhn, and W. Greiner, “Superheavy nuclei in self-consistent nuclear calculations,” Phys. Rev. C 56, 238 (1997).

    Article  ADS  Google Scholar 

  50. J. Decharge, J.-F. Berger, K. Dietrich, and M. S. Weiss, “Superheavy and hyperheavy nuclei in the form of bubbles or semi-bubbles,” Phys. Lett. B 451, 275–282 (1999).

    Article  ADS  Google Scholar 

  51. M. Bender, K. Rutz, P.-G. Reinhard, J. A. Maruhn, and W. Greiner, “Shell structure of superheavy nuclei in self-consistent mean-field models,” Phys. Rev. C 60, 034304 (1999).

    Article  ADS  Google Scholar 

  52. A. T. Kruppa, M. Bender, W. Nazarewicz, P.-G. Reinhard, T. Vertse, S. wiok, “Shell corrections of superheavy nuclei in self-consistent calculations,” Phys. Rev. C 61, 034313 (2000).

    Article  ADS  Google Scholar 

  53. M. Bender, W. Nazarewicz, and P. G. Reinhard, “Shell stabilization of superand hyperheavy nuclei without magic gaps,” Phys. Lett. B 515 P, 42–48 (2001).

    Article  ADS  Google Scholar 

  54. P. G. Reinhard, “The relativistic mean-field description of nuclei and nuclear dynamics,” Rep. Prog. Phys. 52, 439–514 (1989).

    Article  ADS  Google Scholar 

  55. P. Ring, “Relativistic mean field theory in finite nuclei,” Prog. Part. Nucl. Phys. 37, 193–263 (1996).

    Article  ADS  Google Scholar 

  56. S. Cwiok, J. Dobaczewski, P.-H. Heenen, P. Magierski, and W. Nazarewicz, “Shell structure of the superheavy elements,” Nucl. Phys. A 611, 211–246 (1996).

    Article  ADS  Google Scholar 

  57. M. Bender, P.-H. Heenen, and P. G. Reinhard, “Selfconsistent mean-field models for nuclear structure,” Rev. Mod. Phys. 75, 121–180 (2003).

    Article  ADS  Google Scholar 

  58. K. A. Gridnev, S. Yu. Torilov, D. K. Gridnev, V. G. Kartavenko, W. Greiner, and J. Hamilton, “Model of binding alpha-particles and applications to superheavy elements,” Eur. Phys. J. A 25, 609–610 (2005).

    Article  Google Scholar 

  59. V. V. Volkov, “Deep-inelastic transfers and complete fusion of complex nuclei: A new approach to the nuclear fusion process,” Izv. Akad. Nauk SSSR, Ser. Fiz. 50, 1879 (1986).

    Google Scholar 

  60. N. V. Antonenko, E. A. Cherepanov, A. K. Nasirov, V. P. Permjakov, and V. V. Volkov, “Competition between complete fusion and quasifission in reactions between massive nuclei. The fusion barrier,” Phys. Lett. B 319, 425 (1993); “Compound nucleus formation in reactions between massive nuclei: fusion barrier,” Phys. Rev. C 51, 2635 (1995).

    Article  ADS  Google Scholar 

  61. G. G. Adamian, N. V. Antonenko, S. P. Ivanova, and W. Scheid, “Problems in description of fusion of heavy nuclei in the two-center shell model approach,” Nucl. Phys. A 646, 29–52 (1999).

    Article  ADS  Google Scholar 

  62. V. V. Volkov, “Complete fusion of atomic nuclei: Fusion of nuclei within the concept of the double nuclear system,” Fiz. Elem. Chastits At. Yadra 35, 797–857 (2004).

    Google Scholar 

  63. R. V. Jolos, A. I. Muminov, and A. K. Nasirov, “The role of the entrance channel in the fusion of massive nuclei,” Eur. Phys. J. A 4, 245–250 (1999).

    Article  ADS  Google Scholar 

  64. E. A. Cherepanov, “The analysis of reactions leading to synthesis of superheavy elements within the dinuclear system concept”, Preprint OIYaI E7-99-27 (Joint Institute for Nuclear Research, Dubna, 1999).

    Google Scholar 

  65. G. G. Giardina, S. Hofmann, A. I. Muminov, and A. K. Nasirov, “Effect of the entrance channel on the synthesis of superheavy elements,” Eur. Phys. J. A 8, 205 (2000).

    Article  ADS  Google Scholar 

  66. A. S. Zubov, G. G. Adamian, N. V. Antonenko, S. P. Ivanova, and W. Scheid, “Survival probability of superheavy nuclei,” Phys. Rev. C 65, 024308 (2002); Phys. At. Nucl. 66, 218–232 (2003).

    Article  ADS  Google Scholar 

  67. G. G. Adamian, N. V. Antonenko, and W. Scheid, “Isotopic trends in the production of superheavy nuclei in cold fusion reactions,” Phys. Rev. C 69, 011601(R) (2004); “Unexpected isotopic trends in the synthesis of superheavy nuclei,” Phys. Rev. C 69, 014607 (2004).

    Article  ADS  Google Scholar 

  68. G. G. Adamian, N. V. Antonenko, and A. S. Zubov, “Dinuclear systems in complete fusion reactions,” Phys. Part. Nucl. 45, 848–923 (2014).

    Article  Google Scholar 

  69. G. G. Adamian, N. V. Antonenko, and W. Scheid, “Clustering effects within the dinuclear model,” Lect. Notes Phys. 848, 165 (2012).

    Article  ADS  Google Scholar 

  70. Z. Q. Feng, G. M. Jin, J. Q. Li, and W. Scheid, “Formation of superheavy nuclei in cold fusion reactions,” Phys. Rev. C 76, 044606 (2007).

    Article  ADS  Google Scholar 

  71. M. Huang, Z. Gan, X. Zhou, J. Q. Li, and W. Scheid, “Competing fusion and quasifission reaction mechanisms in the production of superheavy nuclei,” Phys. Rev. C 82, 044614 (2010).

    Article  ADS  Google Scholar 

  72. E. G. Zhao, N. Wang, Z. Q. Feng, J. Q. Li, S. G. Zhou, and W. Scheid, “The isotopic and nuclear orientation effects on the production of super-heavy elements,” Int. J. Mod. Phys. E 17, 1937 (2008).

    Article  ADS  Google Scholar 

  73. N. Wang, E. G. Zhao, W. Scheid, and S. G. Zhou, “Theoretical study of the synthesis of superheavy nuclei with Z = 119 and 120 in heavy-ion reactions with trans-uranium targets,” Phys. Rev. C 85, 041601 (2012).

    Article  ADS  Google Scholar 

  74. N. Wang, E. G. Zhao, and W. Scheid, “Synthesis of superheavy nuclei with Z = 118 in hot fusion reactions,” Phys. Rev. C 89, 037601 (2014).

    Article  ADS  Google Scholar 

  75. S. Hofmann and G. Münzenberg, “The discovery of the heaviest elements,” Rev. Mod. Phys. 72, 733 (2000).

    Article  ADS  Google Scholar 

  76. R.-D. Herzberg and P. T. Greenlees, “In-beam and decay spectroscopy of transfermium nuclei,” Prog. Part. Nucl. Phys. 61, 674–720 (2008).

    Article  ADS  Google Scholar 

  77. H. Haba et al., “Production and decay properties of the 1.9-s isomeric state in 261Rf,” Phys. Rev. C 83, 034602 (2011).

    Article  ADS  Google Scholar 

  78. H. Haba et al., “Production of 265Rf in the 248Cm(22Ne, 5n)265Rf reaction and decay properties of two isomeric states in 265Rf,” Phys. Rev. C 85, 024611 (2012).

    Article  ADS  Google Scholar 

  79. P. T. Greenlees et al., “High-K structure in 250Fm and the deformed shell gaps at N = 152 and Z = 100,” Phys. Rev. C 78, 021303(R) (2008).

    Article  ADS  Google Scholar 

  80. B. Sulignano et al., “Identification of a K isomer in 250No,” Eur. Phys. J. A 33, 327–331 (2007).

    Article  ADS  Google Scholar 

  81. H. B. Jeppesen et al., “Multi-quasiparticle states in 256Rf,” Phys. Rev. C 79, 031303(R) (2009).

    Article  ADS  Google Scholar 

  82. F. P. Hessberger et al., “Alpha-gamma decay studies of 255Rf, 251No and 247Fm,” Eur. Phys. J. A 30, 561–569 (2006).

    Article  ADS  Google Scholar 

  83. F. P. Hessberger et al., “Alpha-decay properties of 261Bh,” Eur. Phys. J. A 43, 175–180 (2010).

    Article  ADS  Google Scholar 

  84. F. P. Hessberger et al., “Energy systematics of lowlying Nilsson levels in odd-mass einsteinium isotopes,” Eur. Phys. J. A 26, 233–239 (2005).

    Article  ADS  Google Scholar 

  85. F. P. Hessberger et al., “Decay properties of neutrondeficient isotopes of elements from Z = 101 to Z = 108,” Eur. Phys. J. A 41, 145–153 (2009).

    Article  ADS  Google Scholar 

  86. M. Asai et al., “Neutron one-quasiparticle states in 251Fm populated via the a-decay of 255No,” Phys. Rev. C 83, 014315 (2011).

    Article  ADS  Google Scholar 

  87. D. Peterson et al., “Decay modes of 250No,” Phys. Rev. C 74, 014316 (2006).

    Article  ADS  Google Scholar 

  88. F. P. Hessberger et al., “Spontaneous fission and alpha-decay properties of neutron deficient isotopes 257, 153104 and 258106,” Z. Phys. A 359, 415–425 (1997).

    Article  ADS  Google Scholar 

  89. F. P. Hessberger et al., “Decay properties of neutrondeficient isotopes 256, 257Db, 255Rf, 252, 253Lr,” Eur. Phys. J. A 12, 57 (2001).

    Article  ADS  Google Scholar 

  90. A. Chatillon et al., “Spectroscopy and single-particle structure of the oddZ heavy elements 255Lr, 251Md and 247Es,” Eur. Phys. J. A 30, 397–411 (2006).

    Article  ADS  Google Scholar 

  91. S. Ketelhut et al., “γ-Ray spectroscopy at the limits: first observation of rotational bands in 255Lr,” Phys. Rev. Lett. 102, 212501 (2009).

    Article  ADS  Google Scholar 

  92. I. Ahmad, R. R. Chasman, and P. R. Fields, “Spectroscopic studies beyond the N = 152 neutron gap: decay,” Phys. Rev. C 61, 044301 (2000).

    Article  ADS  Google Scholar 

  93. V. G. Soloviev, Theory of Complex Nuclei (Pergamon Press, Oxford, 1976).

    Google Scholar 

  94. S. P. Ivanova, A. L. Komov, L. A. Malov, and V. G. Soloviev, “Two-quasiparticle and one-phonon states for the even-even deformed nuclei in the actinide region,” Fiz. Elem. Chastits At. Yadra 7, 450 (1976).

    Google Scholar 

  95. V. G. Soloviev, A. V. Sushkov, and N. Yu. Shirikova, “Description of Nonrotational states of 250Cf and 256Fm,” Sov. J. Nucl. Phys. 54, 748 (1991).

    Google Scholar 

  96. S. G. Nilsson and I. Ragnarsson, Shapes and Shells in Nuclear Structure (Cambridge University Press, Cambridge, 1995).

    Google Scholar 

  97. Z. Lojewski, V. V. Pashkevich, and S. Cwiok, “Excitation effects on the nuclear-fission process in the heaviest elements,” Nucl. Phys. A 436, 499–505 (1985).

    Article  ADS  Google Scholar 

  98. J. Maruhn and W. Greiner, “The asymmetric two center shell model,” Z. Phys. A 251, 431–457 (1972).

    Article  Google Scholar 

  99. N. Yu. Shirikova, A. V. Sushkov, L. A. Malov, and R. V. Jolos, “Structure of the low-lying states of the odd-neutron nuclei with Z ~ 100,” Eur. Phys. J. A 51, 21 (2015).

    Article  ADS  Google Scholar 

  100. A. N. Bezbakh, V. G. Kartavenko, G. G. Adamian, N. V. Antonenko, R. V. Jolos, and V. O. Nesterenko, “Quasiparticle structure of superheavy nuclei along the a-decay chain of 288115,” Phys. Rev. C 92, 014329 (2015).

    Article  ADS  Google Scholar 

  101. G. D. Adeev, I. A. Gamalya, and P. A. Cherdantsev, “Single-nucleon states and energy surfaces of 238U in the fission process,” Yad. Fiz. 12, 272–283 (1971).

    Google Scholar 

  102. G. G. Adamian, N. V. Antonenko, and W. Scheid, “High-spin isomers in some of the heaviest nuclei: spectra, decays, and population,” Phys. Rev. C 81, 024320 (2010).

    Article  ADS  Google Scholar 

  103. G. G. Adamian, N. V. Antonenko, S. N. Kuklin, and W. Schei, “One-quasiparticle states in odd-Z heavy nuclei,” Phys. Rev. C 82, 054304 (2010).

    Article  ADS  Google Scholar 

  104. G. G. Adamian, N. V. Antonenko, S. N. Kuklin, B. N. Lu, L. A. Malov, and S. G. Zhou, “Behavior of one-quasiparticle levels in odd isotonic chains of heavy nuclei,” Phys. Rev. C 84, 024324 (2011).

    Article  ADS  Google Scholar 

  105. H. Bethe, Nuclear Physics (Gostekhteorizdat, Moscow, 1948) [Russian translation].

    MATH  Google Scholar 

  106. A. V. Ignatyuk, Statistical Properties of Excited Atomic Nuclei (Energoatomizdat, Moscow, 1983) [in Russian].

    Google Scholar 

  107. A. V. Malyshev, Level Density and Structure of Atomic Nuclei (Atomizdat, Moscow, 1969) [in Russian].

    Google Scholar 

  108. J. Gilat, “Analytical approximation of the combinatorial calculation of nuclear level densities,” Phys. Rev. C 1, 1432 (1970).

    Article  ADS  Google Scholar 

  109. A. V. Ignatyuk and Yu. N. Shubin, “Effect of the discrete structure of the one-particle spectrum on therMd 255 101 Md 256 101 modynamical functions of nuclei,” Yad. Fiz. 8, 1135–1141 (1968).

    Google Scholar 

  110. I. N. Borzov and S. Gorieli, “Microscopic nuclear models and nuclear data for astrophysics,” Fiz. Elem. Chastits At. Yadra 34, 1375 (2003).

    Google Scholar 

  111. A. V. Ignatyuk, K. K. Istekov, and G. N. Smirenkin, “Role of collective effects in nuclear level density systematics,” Yad. Fiz. 29, 875–883 (1979).

    Google Scholar 

  112. G. G. Adamian N. V. Antonenko, R. V. Jolos, S. P. Ivanova, and O. I. Melnikova, “Effective nucleus–nucleus potential for calculation of potential energy of a dinuclear system,” Int. J. Mod. Phys. E 5, 191–216 (1996).

    Article  ADS  Google Scholar 

  113. S. Raman, C. W. Nester, and P. Tikkanen, “Transition probability from the ground to the first-excited state of even-even nuclides,” At. Data Nucl. Data Tables 78, 1–128 (2001).

    Article  ADS  Google Scholar 

  114. C. Borcea, G. Audi, A. H. Wapstra, and P. Favaon, “Recommended values for mass excesses, binding energies, beta-minus decay energies, proton and neutron separation energies, and alpha-decay energies in keV,” Nucl. Phys. A 565, 158 (1993).

    Article  ADS  Google Scholar 

  115. W. D. Myers and W. J. Swiatecki, “Nuclear properties according to the Thomas–Fermi model,” Nucl. Phys. A 601, 141–167 (1996).

    Article  ADS  Google Scholar 

  116. A. N. Kuzmina, G. G. Adamian, and N. V. Antonenko, “Impact of nuclear structure on production and identification of new superheavy nuclei,” Eur. Phys. J. A 47, 145 (2011).

    Article  ADS  Google Scholar 

  117. G. G. Adamian, N. V. Antonenko, and W. Scheid, “Isotopic dependence of isomer states in heavy nuclei,” Acta Phys. Pol. B 40, 759–762 (2009); AIP Conf. Proc. 1165, 136–139 (2009).

    ADS  Google Scholar 

  118. http://www.nndc.bnl.gov

  119. H. L. Hall et al., “b-Delayed fission from 256Esm and the level scheme of 256Fm,” Phys. Rev. C 39, 1866 (1989).

    Article  ADS  Google Scholar 

  120. S. Kuklin, G. G. Adamian, and N. V. Antonenko, “Spectroscopic factors within the dinuclear-system model,” Phys. At. Nucl. 71, 1756–1768 (2008).

    Article  Google Scholar 

  121. S. Kuklin, T. M. Shneidman, G. G. Adamian, and N. V. Antonenko, “Alpha-decay fine structures of U Isotopes and systematics for isotopic chains of Po and Rn,” Eur. Phys. J. A 48, 112 (2012).

    Article  ADS  Google Scholar 

  122. I. Muntian, Z. Patyk, and A. Sobiczewski, “Are superheavy nuclei around 270Hs really deformed?,” Phys. Lett. B 500, 241–246 (2001).

    Article  ADS  Google Scholar 

  123. S. Hofmann et al., “The new isotope 270110 and its decay products 266Hs and 262Sg,” Eur. Phys. J. A 10, 5–10 (2001).

    Article  ADS  Google Scholar 

  124. J. M. Gates et al., “Synthesis of rutherfordium isotopes in the 238U(26Mg, xn)264–xRf reaction and study of their decay properties,” Phys. Rev. C 77, 034603 (2008).

    Article  ADS  Google Scholar 

  125. T. M. Shneidman, G. G. Adamian, N. V. Antonenko, and R. V. Jolos, “Possible alternative parity bands in the heaviest nuclei,” Phys. Rev. C 79, 034316 (2006).

    Article  ADS  Google Scholar 

  126. G. M. Ter-Akopian et al., “Synthesis of the new neutron-deficient isotopes 250102, 249Fm, and 254Ku,” Nucl. Phys. A 255, 509–522 (1975).

    Article  ADS  Google Scholar 

  127. F. R. Xu, E. G. Zhao, R. Wyss, and P. M. Walker, “Enhanced stability of superheavy nuclei due to highspin isomerism,” Phys. Rev. Lett. 92, 252501 (2004).

    Article  ADS  Google Scholar 

  128. A. S. Zubov, G. G. Adamian, N. V. Antonenko, S. P. Ivanova, and W. Scheid, “Survival probabilities of superheavy nuclei based on recent predictions of nuclear properties,” Eur. Phys. J. A 23, 249–256 (2005).

    Article  ADS  Google Scholar 

  129. J. Dvorak et al., “Doubly magic nucleus” Phys. Rev. Lett. 97, 242501 (2006).

    Article  ADS  Google Scholar 

  130. J. Dvorak et al., “Observation of the 3n evaporation channel in the complete hot-fusion reaction 26Mg + 248Cm leading to the new superheavy nuclide 271Hs,” Phys. Rev. Lett. 100, 132503 (2008).

    Article  ADS  Google Scholar 

  131. Ch. Düllmann and A. Türler, “248Cm(22Ne, xn)270–xSg reaction and the decay properties of 265Sg reexamined,” Phys. Rev. C 77, 064320 (2008).

    Article  ADS  Google Scholar 

  132. P. Möller, A. J. Sierk, T. Ichikawa, A. Iwamoto, R. Bengtsson, H. Uhrenholt, S. Åberg, “Heavy-element fission barriers,” Phys. Rev. C 79, 064304 (2009).

    Article  ADS  Google Scholar 

  133. J. Meng, J. Peng, S. Q. Zhang, and S.-G. Zhou, “Possible existence of multiple chiral doublets in 106Rh,” Phys. Rev. C 73, 037303 (2006)

    Article  ADS  Google Scholar 

  134. J. Peng, H. Sagawa, S. Q. Zhang, J. M. Yao, Y. Zhang, and J. Meng, “Search for multiple chiral doublets in rhodium isotopes,” Phys. Rev. C 77, 024309 (2006).

    Article  ADS  Google Scholar 

  135. S. Hofmann et al., “New results on elements 111 and 112,” Eur. Phys. J. A 14, 147–157 (2002).

    Article  ADS  Google Scholar 

  136. K. Morita et al., “Experiment on synthesis of an isotope 277112 by 208Pb + 80Zn reaction,” J. Phys. Soc. Jpn. 76, 043201 (2007).

    Article  ADS  Google Scholar 

  137. M. Asai et al., “Experimental identification of spinparities and single-particle configurations in 257No and its a-decay daughter 253Fm,” Phys. Rev. Lett. 95, 102502 (2005).

    Article  ADS  Google Scholar 

  138. Yu. A. Lazarev et al., “Decay of 273110: shell closure at N = 162,” Phys. Rev. C 54, 620 (1996).

    Article  ADS  Google Scholar 

  139. S. Goriely, N. Chamel, and J. M. Pearson, “Skyrme–Hartree–Fock–Bogoliubov nuclear mass formulas: Crossing the 0.6 MeV accuracy threshold with microscopically deduced pairing,” Phys. Rev. Lett. 102, 152503 (2009); http://www-astro.ulb.ac.de/html/masses.html.

    Article  ADS  Google Scholar 

  140. C. Samanta, P. Roy Chowdhury, and D. N. Basu, “Predictions of alpha decay half lives of heavy and superheavy elements,” Nucl. Phys. A. 789, 142 (2007).

    Article  ADS  Google Scholar 

  141. P. Roy Chowdhury, C. Samanta, and D. N. Basu, “Nuclear half-lives for a-radioactivity of elements with 100 = Z = 130,” At. Data Nucl. Data Tables 94, 781–806 (2008).

    Article  ADS  Google Scholar 

  142. F. A. Gareev, S. P. Ivanova, L. A. Malov, and V. G. Soloviev, “Single-particle energies and wave functions for the Saxon–Woods potential and the levels of odd-A nuclei in the actinide region,” Nucl. Phys. A 171, 134–164 (1971).

    Article  ADS  Google Scholar 

  143. S. C-wiok, S. Hofmann and W. Nazarewicz, “Shell structure of the heaviest elements,” Nucl. Phys. A. 573, 356–394 (1994).

    Article  ADS  Google Scholar 

  144. T. M. Shneidman, G. G. Adamian, N. V. Antonenko, R. V. Jolos, and W. Scheid, “Cluster interpretation of parity splitting in alternating parity bands,” Phys. Lett. Hs 270 108 162, B 526, 322–328 (2002); “Cluster interpretation of properties of alternating parity bands in heavy nuclei,” Phys. Rev. C 67, 014313 (2003).

    Article  Google Scholar 

  145. G. G. Adamian, N. V. Antonenko, and W. Scheid, “Feature of production of new superheavy nuclei in actinide-based complete-fusion reactions,” Eur. Phys. J. A 41, 235–241 (2009).

    Article  ADS  MATH  Google Scholar 

  146. S. Liran, A. Marinov, and N. Zeldes, “Semiempirical shell model masses with magic number Z = 126 for superheavy elements,” Phys. Rev. C 62, 047301 (2000); “Semiempirical shell model masses with magic number Z = 126 for translead elements with N = 126,” Phys. Rev. C 63, 017302 (2000); “Applications of semiempirical shell model masses based on a proton magic number Z = 126 to heavy and superheavy nuclei,” Phys. Rev. C 66, 024303 (2002); “Semiempirical shell model tabulated masses for translead elements with magic proton number Z = 126”. arXiv:nuclth/0102055. 2001.

    Article  ADS  Google Scholar 

  147. A. N. Kuzmina, G. G. Adamian, and N. V. Antonenko, “Structures of nuclei in a-decay chains of 291, 293117,” Phys. Rev. C 85, 017302 (2012).

    Article  ADS  Google Scholar 

  148. V. M. Strutinsky, “Shell effects in nuclear masses and deformation energies,” Nucl. Phys. A 95, 420–442 (1967); “‘Shells’ in Deformed Nuclei,” Nucl. Phys. A 122, 1 (1968).

    Article  ADS  Google Scholar 

  149. A. N. Kuzmina, G. G. Adamian, N. V. Antonenko, and W. Scheid, “Influence of proton shell closure on production and identification of new superheavy nuclei,” Phys. Rev. C 85, 014319 (2012).

    Article  ADS  Google Scholar 

  150. G. Royer, M. Guilbaud, and A. Onilon, “Macromicroscopic mass formulae and nuclear mass predictions,” Nucl. Phys. A 847, 24–41 (2010).

    Article  ADS  Google Scholar 

  151. S. Goyal and R. K. Puri, “Formation of fragments in heavy-ion collisions using a modified clusterization method,” Phys. Rev. C 83, 047601 (2011).

    Article  ADS  Google Scholar 

  152. G. G. Adamian, N. V. Antonenko, W. Scheid, and V. V. Volkov, Nucl. Phys. A 633, 409–420 (1998); “Competition between complete fusion and quasifission in dinuclear system,” Nuovo Cim. A 110, 1143–1148 (1997).

  153. G. G. Adamian, N. V. Antonenko, and W. Scheid, “Isotopic dependence of fusion cross sections in reactions with heavy nuclei,” Nucl. Phys. A 678, 24–38 (2000).

    Article  ADS  Google Scholar 

  154. A. S. Zubov, G. G. Adamian, N. V. Antonenko, S. P. Ivanova, and W. Scheid, “Competition between evaporation channels in neutron-deficient nuclei,” Phys. Rev. C 68, 014616 (2003).

    Article  ADS  Google Scholar 

  155. A. Parkhomenko and A. Sobiczewski, “Neutron onequasiparticle states of heaviest nuclei,” Acta. Phys. Pol. B 36, 3115 (2005).

    ADS  Google Scholar 

  156. A. N. Kuzmina, G. G. Adamian, and N. V. Antonenko, “Role of quasiparticle structure in a-decays of the heaviest nuclei,” Phys. Rev. C 85, 027308 (2012).

    Article  ADS  Google Scholar 

  157. A. Sobiczewski, “Predictions for nuclei of a new element 117,” Acta. Phys. Pol. B 41, 157 (2010).

    Google Scholar 

  158. G. G. Adamian, N. V. Antonenko, and V. V. Sargsyan, “Stability of superheavy nuclei produced in actinidebased complete fusion reactions: evidence for the next magic proton number at Z = 120,” Phys. Rev. C 79, 054608 (2009).

    Article  ADS  Google Scholar 

  159. J. Meng, H. Toki, S. G. Zhou, S. Q. Zhang, W. H. Long, and L. S. Geng, “Relativistic continuum Hartree–Bogoliubov theory for ground-state properties of exotic nuclei,” Prog. Part. Nucl. Phys. 57, 470–563 (2006).

    Article  ADS  Google Scholar 

  160. L. A. Malov and V. G. Soloviev, “Approximate solution of equations of the model for description of fragmentation in deformed nuclei,” Yad. Fiz. 21, 502 (1975).

    Google Scholar 

  161. A. I. Vdovin, V. V. Voronov, L. A. Malov, V. G. Soloviev, and Ch. Stoyanov, “Semimicroscopic description of state density in complex nculei,” Fiz. Elem. Chastits At. Yadra 7, 952 (1976).

    Google Scholar 

  162. P. Decowski, W. Grochulski, A. Marcinkowski, K. Siwek, and Z. Wilhelmi, “On superconductivity effects in nuclear level density,” Nucl. Phys. A 110, 129 (1968).

    Article  ADS  Google Scholar 

  163. G. D. Adeev and P. A. Cherdantsev, “Application of the Strutinsky method to the study of shell effects in the excited nuclear state density,” Yad. Fiz. 21, 491 (1975).

    Google Scholar 

  164. D. Gambacurta, D. Lacroix, and N. Sandulescu, “Pairing and specific heat in hot nuclei,” Phys. Rev. C 88, 034324 (2013).

    Article  ADS  Google Scholar 

  165. A. S. Iljinov et al., “Phenomenological statistical analysis of level densities, decay widths and lifetimes of excited nuclei,” Nucl. Phys. A 543, 517–557 (1992).

    Article  ADS  Google Scholar 

  166. S. Goriely, S. Hilaire, and A. J. Koning, “Improved microscopic nuclear level densities within the Hartree–Fock–Bogoliubov plus combinatorial method,” Phys. Rev. C 78, 064307 (2008).

    Article  ADS  Google Scholar 

  167. E. Melby, M. Guttormsen, J. Rekstad, A. Schiller, S. Siem, and A. Voinov, “Thermal and electromagnetic properties of 166Er and 167Er,” Phys. Rev. C 63, 044309 (2001).

    Article  ADS  Google Scholar 

  168. A. V. Ignatyuk, G. P. Smirenkin, and A. S. Tishin, “Phenomenological description of the energy dependence of the level density parameter,” Yad. Fiz. 21, 485–490 (1975).

    Google Scholar 

  169. S. Shlomo and J. B. Natowitz, “Temperature and mass dependence of level density parameter,” Phys. Rev. C 44, 2878 (1991).

    Article  ADS  Google Scholar 

  170. A. N. Bezbakh, T. M. Shneidman, G. G. Adamian, and N. V. Antonenko, “Microscopic-macroscopic method for studying single-particle level density of superheavy nuclei,” J. Phys. Conf. 503, 012011 (2014); “Level densities of heaviest nuclei,” Eur. Phys. J. A 50, 97 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Adamian.

Additional information

Original Russian Text © G.G. Adamian, N.V. Antonenko, A.N. Bezbakh, R.V. Jolos, 2016, published in Fizika Elementarnykh Chastits i Atomnogo Yadra, 2016, Vol. 47, No. 3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adamian, G.G., Antonenko, N.V., Bezbakh, A.N. et al. Effect of properties of superheavy nuclei on their production and decay. Phys. Part. Nuclei 47, 387–455 (2016). https://doi.org/10.1134/S1063779616030023

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779616030023

Keywords

Navigation