Skip to main content
Log in

Micromegas chambers for the experiment ATLAS at the LHC (A Brief Overview)

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The increase in luminosity and energy of the Large hadron collider (LHC) in the next upgrade (Phase-1) in 2018–2019 will lead to a significant increase in radiation load on the ATLAS detector, primarily in the areas close to the interaction point of the LHC proton beams. One of these regions is the Small Wheel of the ATLAS Muon Spectrometer. It is planned to be replaced with the New Small Wheel that will have Micromegas chambers as main coordinate detectors. The paper gives an overview of all existing types of Micromegas detectors with special focus on the Micromegas chambers for the ATLAS detector upgrade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Sauli, “Gas detectors: Recent developments and future perspectives,” Nucl. Instrum. Methods Phys. Res., A 419, 189 (1988).

    Article  ADS  Google Scholar 

  2. F. Sauli and A. Sharma, “Micropattern gaseous detectors,” Annu. Rev. Nucl. Part. Sci. 49, 341 (1999).

    Article  ADS  Google Scholar 

  3. H. Geiger and W. Muller, “Das Elektronenzählrohr”, Phys. Z. 29, 839 (1928).

    MATH  Google Scholar 

  4. G. Charpak, R. Bouclier, T. Bressani, J. Favier, and C. Zupancic, “The use of multiwire proportional counters to select and localize charged particles”, Nucl. Instrum. Methods Phys. Res., A 62, 262 (1968).

    Article  Google Scholar 

  5. D. R. Nygren and J. N. Marx, “The time projection chamber,” Phys. Today 31, 46 (1978).

    Google Scholar 

  6. A. Oed, “Position-sensitive detector with microstrip anode for electron multiplication with gases,” Nucl. Instrum. Methods Phys. Res., A 263, 351 (1988).

    Article  ADS  Google Scholar 

  7. R. Bouclier, G. Million, L. Ropelewski, F. Sauli, Yu. N. Pestov, and L. I. Shekhtman, “Performance of gas microstrip chambers on glass substrata with electronic conductivity,” Nucl. Instrum. Methods Phys. Res., A 332, 100 (1993).

    Article  ADS  Google Scholar 

  8. F. Angelini, R. Bellazzini, A. Brez, M. M. Massai, G. Spandre, M. R. Torquati, R. Bouclier, J. Gaudaen, and F. Sauli, “Test-beam study of the performance of the microstrip gas avalanche chamber,” IEEE Trans. Nucl. Sci. 37, 112 (1990).

    Article  ADS  Google Scholar 

  9. J. Bohm, “High rate operation and lifetime studies with micro-strip gas chambers,” Nucl. Instrum. Methods Phys. Res., A 360, 34 (1995).

    Article  ADS  Google Scholar 

  10. F. Sauli, “Gas detectors: achievements and trends,” Nucl. Instrum. Methods Phys. Res., A 461, 47 (2001).

    Article  ADS  Google Scholar 

  11. F. Sauli, “GEM: A new concept for electron amplification in gas detectors,” Nucl. Instrum. Methods Phys. Res., A 386, 531 (1997).

    Article  ADS  Google Scholar 

  12. Y. Giomataris, Ph. Rebourgeard, J. P. Robert, and G. Charpak, “MICROMEGAS: A high-granularity position-sensitive gaseous detector for high particleflux environments,” Nucl. Instrum. Methods Phys. Res., A 376, 29–35 (1996).

    Article  ADS  Google Scholar 

  13. T. Zeuner, “The MSGC-GEM inner tracker for HERA-B,” Nucl. Instrum. Methods Phys. Res., A 446, 324 (2000).

    Article  ADS  Google Scholar 

  14. C. W. Fabjan and W. Riegler, “Trends and highlights of VCI 2004,” Nucl. Instrum. Methods Phys. Res., A 535, 79 (2004).

    Article  ADS  Google Scholar 

  15. M. Alfonsi, G. Bencivenni, W. Bonivento, S. Cadeddu, E. Cardelli, A. Cardini, P. Ciambrone, E. Fois, A. Lai, F. Murtas, M. Poli Lener, and D. Raspino, “Status of triple GEM muon chambers for the LHCb experiment,” Nucl. Instrum. Methods Phys. Res., A 581, 283 (2007).

    Article  ADS  Google Scholar 

  16. G. Ruggiero, “The TOTEM Detectors,” in Proc. of the XIth International Conference of Elastic and Diractive Scattering Towards the High Energy Frontiers, Blois, France. 2005.

    Google Scholar 

  17. I. Tserruya, “Development of a triple GEM UV-photon detector operated in pure CF4 for the PHENIX experiment,” Nucl. Instrum. Methods Phys. Res., A 523, 345 (2004).

    Article  ADS  Google Scholar 

  18. Y. Giomataris and G. Charpak, “A hadron-blind detector,” Nucl. Instrum. Methods Phys. Res., A 310, 589–595 (1991).

    Article  ADS  Google Scholar 

  19. Y. Giomataris. Private communication.

  20. G. Charpak, J. Derre, Y. Giomataris, and Ph. Rebourgeard, “Micromegas, a multipurpose gaseous detector,” Nucl. Instrum. Methods Phys. Res., A 478, 84 (2002).

    Article  Google Scholar 

  21. A. Delbart, R. De Oliveira, J. Derre, Y. Giomataris, F. Jeanneau, Y. Papadopoulos, and Ph. Rebourgeard, “New developments of Micromegas detector,” Nucl. Instrum. Methods Phys. Res., A 461, 84 (2001).

    Article  ADS  Google Scholar 

  22. S. Andriamonje, D. Attié, E. Berthoumieux, M. Calviani, P. Colas, T. Dafni, G. Fanourakis, E. Ferrer-Ribas, J. Galan, T. Geralis, A. Giganon, I. Giomataris, A. Gris, C. G. Sanchez, F. Gunsing, F. J. Iguaz, I. Irastorza, R. De Oliveira, T. Papaevangelou, and J. Ruz, “Development and performance of Microbulk Micromegas detectors,” J. Instrum 5, P02001 (2010).

    Google Scholar 

  23. I. Giomataris, R. De Oliveira, S. Andriamonje, S. Aune, G. Charpak, P. Colas, G. Fanourakis, E. Ferrer, A. Giganon, Ph. Rebourgeard, and P. Salin, “Micromegas in a bulk,” Nucl. Instrum. Methods Phys. Res., A 560, 405 (2006).

    Article  ADS  Google Scholar 

  24. M. Chefdeville, P. Colas, Y. Giomataris, H. van der Graaf, E. H. M. Heijne, S. van der Putten, C. Salm, J. Schmitz, S. Smits, J. Timmermans, and J. L. Visschers, “An electron-multiplying “Micromegas” grid made in silicon wafer post-processing technology,” Nucl. Instrum. Methods Phys. Res., A 556, 490 (2006).

    Article  ADS  Google Scholar 

  25. V. M. Blanco Carballo, M. Chefdeville, M. Fransen, H. van der Graaf, J. Melai, C. Salm, J. Schmitz, and J. Timmermans, “A radiation imaging detector made by postprocessing a standard CMOS chip,” IEEE Electron Device Lett. 29, 585 (2008).

    Article  ADS  Google Scholar 

  26. M. Chefdeville, “Development of micromegas-like gaseous detectors using a pixel readout chip as collecting anode,” PhD thesis (Univ. Amsterdam, Amsterdam, 2009).

    Google Scholar 

  27. V. M. B. Carballoa, Y. Bylevich, M. Chefdeville, M. Fransen, H. van der Graaf, F. Hartjes, J. Melai, C. Salma, J. Schmitz, J. Timmermans, J. L. Visschers, and N. Wyrsch, “Results from MPGDs with a protected Timepix or Medipix-2 pixel sensor as active anode,” in IEEE NSS conference record, 2007.

    Google Scholar 

  28. A. A. Aarts, V. M. B. Carballo, M. Chefdeville, P. Colas, S. Dunand, M. Fransen, H. van der Graaf, Y. Giomataris, F. Hartjes, E. Koffeman, J. Melaib, H. Peek, W. Riegler, C. Salm, and J. Schmitz, “Discharge protection and ageing of micromegas pixel detector,” in IEEE NSS conference record, 2006.

    Google Scholar 

  29. H. van der Graaf, F. Hartjes, and A. Romaniouk, “Perfomance and prospects of GridPix and gossip detectors,” RD51-2009-006 (CERN, Geneva, 2009).

    Google Scholar 

  30. D. Attié, A. Chaus, P. Colas, E. Ferrer-Ribas, J. Galán, I. Giomataris, A. Gongadze, F. J. Iguaz, R. De Oliveira, T. Papaevangelou, and A. Peyaud, “A Piggyback resistive Micromegas,” J. Instrum 8, P05019 (2013).

    Google Scholar 

  31. J. Galan, D. Attié, A. Chaus, P. Colas, A. Delbart, E. Ferrer-Ribas, I. Giomataris, F. J. Iguaz, A. Gongadze, T. Papaevangelou, and A. Peyaud, “Characterization and simulation of resistive-MPGDs with resistive strip and layer topologies,” Nucl. Instrum. Methods Phys. Res., A 732, 229 (2013).

    Article  ADS  Google Scholar 

  32. J. Derre, Y. Giomataris, H. Zaccone, A. Bay, J.-P. Perroud, and F. Ronga, “Spatial resolution in Micromegas detector,” Nucl. Instrum. Methods Phys. Res., A 459, 523 (2001).

    Article  ADS  Google Scholar 

  33. F. J. Iguaz, D. Attié, D. Calvet, P. Colas, F. Druillole, E. Ferrer-Ribas, I. Giomataris, J. P. Mols, J. Pancin, T. Papaevangelou, J. Billard, G. Bosson, J. L. Bouly, O. Bourrion, Ch. Fourel, C. Grignon, O. Guillaudin, F. Mayet, J. P. Richer, and D. Santos, “Micromegas detector developments for Dark Matter directional detection with MIMAC,” J. Instrum 6, P07002 (2011).

    Google Scholar 

  34. L. Rossi and O. Brüning, “High Luminosity Large Hadron Collider A description for the European Strategy Preparatory Group,” Tech. Rep. CERN-ATS2012-236 (CERN, Geneva, 2012).

    Google Scholar 

  35. The ATLAS Collaboration, “ATLAS NSW TDR,” CERN-LHCC-2013-006, ATLAS-TDR-20-2013 (CERN, Geneva, 2013).

    Google Scholar 

  36. J. Wotschack, “The development of large-area MICROMEGAS detectors for the ATLAS upgrade,” Mod. Phys. Lett. A 28, 1340020 (2013).

    Article  ADS  Google Scholar 

  37. T. Alexopoulos, J. Burnens, R. de Oliveira, G. Glonti, O. Pizzirusso, V. Polychronakos, G. Sekhniaidze, G. Tsipolitis, and J. Wotschack, “A spark-resistant bulk-micromegas chamber for high-rate applications,” Nucl. Instrum. Methods Phys. Res., A 640, 110 (2011).

    Article  ADS  Google Scholar 

  38. A. Bay, J.-P. Perroud, F. Ronga, J. Derre, Y. Giomataris, A. Delbart, and Y. Papadopoulos, “Study of sparking in Micromegas chambers,” Nucl. Instrum. Methods Phys. Res., A 488, 162 (2002).

    Article  ADS  Google Scholar 

  39. D. Thers, Ph. Abbon, J. Ball, Y. Bedfer, C. Bernet, C. Carasco, E. Delagnes, D. Durand, J.-C. Faivre, H. Fonvieille, A. Giganon, F. Kunne, J. M. Le Go, F. Lehar, A. Magnon, D. Neyret, E. Pasquetto, H. Pereira, S. Platchkov, E. Poisson, and Ph. Rebourgeard, “Micromegas as a large microstrip detector for the COMPASS experiment,” Nucl. Instrum. Methods Phys. Res., A 469, 133 (2011).

    Article  ADS  Google Scholar 

  40. J. Galan, D. Attié, E. Ferrer-Ribas, A. Giganon, I. Giomataris, S. Herlant, F. Jeanneau, A. Peyaud, Ph. Schune and T. Alexopoulos, “An aging study of resistive micromegas for the HL-LHC environment,” J. Instrum 8, P04028 (2013).

    Google Scholar 

  41. F. Jeanneau, T. Alexopoulos, D. Attié, M. Boyer, J. Derre, G. Fanourakis, E. Ferrer-Ribas, J. Galan, E. Gazis, T. Geralis, A. Giganon, I. Giomataris, S. Herlant, J. Manjarres, E. Ntomari, Ph. Schune, M. Titov, and G. Tsipolitis, “Performances and ageing study of resistive-anodes Micromegas detectors for HL-LHC environment,” IEEE Trans. Nucl. Sci. 59, 1711 (2012).

    Article  ADS  Google Scholar 

  42. T. Alexopoulos et al. (MAMMA collab.), “Development of large size Micromegas detector for the upgrade of the ATLAS muon system,” Nucl. Instrum. Methods Phys. Res., A. 617, 161 (2010).

    Article  ADS  Google Scholar 

  43. G. Charpak, J. Derre, A. Giganon, Y. Giomataris, D. Jourde, C. Kochowski, S. Loucatos, G. Puill, Ph. Rebourgeard, and J. P. Robert, “First beam test results with Micromegas, a high-rate, high-resolution detector,” Nucl. Instrum. Methods Phys. Res., A 412, 47 (1998).

    Article  ADS  Google Scholar 

  44. A. Peyaud, A. Angelopoulos, C. Chelmis, V. Costopoulos, M. Chica, I. Giomataris, A. Gongadze, T. Herbert, I. Kantemiris, S. Kircha, J. P. Mols, T. Papaevangelou, P. Pavlopoulos, and F. Quinlan, “The ForFire photodetector,” Nucl. Instrum. Methods Phys. Res., A 787, 102 (2015).

    Article  ADS  Google Scholar 

  45. R. Gaglione, C. Adloff, M. Chefdeville, A. Espargilière, N. Geffroy, Y. Karyotakis, and R. De Oliveira, “MICROMEGAS chamber with embedded DIRAC ASIC for hadronic calorimeter,” J. Instrum 4, P11011 (2009).

    Article  Google Scholar 

  46. C. Adloff, D. Attié, J. Blaha, S. Cap, M. Chefdeville, P. Colas, A. Dalmaz, C. Drancourt, A. Espargilière, R. Gaglione, R. Gallet, N. Geffroy, I. Giomataris, J. Jaquemier, Y. Karyotakis, F. Peltier, J. Prast, and G. Vouters, “MICROMEGAS chambers for hadronic calorimetry at a future linear collider,” arXiv:0909.3197v2.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Gongadze.

Additional information

Original Russian Text © A.L. Gongadze, 2016, published in Fizika Elementarnykh Chastits i Atomnogo Yadra, 2016, Vol. 47, No. 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gongadze, A.L. Micromegas chambers for the experiment ATLAS at the LHC (A Brief Overview). Phys. Part. Nuclei 47, 270–289 (2016). https://doi.org/10.1134/S1063779616020027

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779616020027

Keywords

Navigation