Skip to main content
Log in

Automation of experiments at Dubna Gas-Filled Recoil Separator

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

Approaches to solving the problems of automation of basic processes in long-term experiments in heavy ion beams of the Dubna Gas-Filled Recoil Separator (DGFRS) facility are considered. Approaches in the field of spectrometry, both of rare α decays of superheavy nuclei and those for constructing monitoring systems to provide accident-free experiment running with highly radioactive targets and recording basic parameters of experiment, are described. The specific features of Double Side Silicon Strip Detectors (DSSSDs) are considered, special attention is paid to the role of boundary effects of neighboring p–n transitions in the “active correlations” method. An example of an off–beam experiment attempting to observe Zeno effect is briefly considered. Basic examples for nuclear reactions of complete fusion at 48Ca ion beams of U-400 cyclotron (LNR, JINR) are given. A scenario of development of the “active correlations” method for the case of very high intensity beams of heavy ions at promising accelerators of LNR, JINR, is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Subotic, Yu. Ts. Oganessian, V. K. Utyonkov, Yu. V. Lobanov, F. Sh. Abdullin, A. N. Polyakov, Yu. S. Tsyganov, and O. V. Ivanov, “Evaporation residue collection efficiencies and position spectra of the Dubna gas-filled recoil separator,” Nucl. Inst. Meth. A, 481, 71–80 (2002).

    Article  ADS  Google Scholar 

  2. Yu. S. Tsyganov, “The Dubna gas-filled recoil separator: Status and developments,” J. Phys. G: Nucl. Part. Phys., 25, 937–940 (1999).

    Article  ADS  Google Scholar 

  3. Yu. S. Tsyganov, A. N. Polyakov, and A. M. Sukhov, “An improved real-time PC-based algorithm for extraction of recoil-alpha sequences in heavy-ion induced nuclear reactions,” Nucl. Inst. Meth. A, 513, 413–416 (2003).

    Article  ADS  Google Scholar 

  4. Yu. S. Tsyganov, V. G. Subbotin, A. N. Polyakov, S. N. Iliev, A. M. Sukhov, A. A. Voinov, and V. I. Tomin, “Detection system for heavy element research: Present status,” Nucl. Inst. Meth. A, 525, 213–216 (2004).

    Article  ADS  Google Scholar 

  5. A. M. Sukhov, A. N. Polyakov, and Yu. S. Tsyganov, “Parameter monitoring and control cystem of the Dubna Ggs-filled recoil separator,” Phys. Part. Nucl. Lett, 7 (5), 370–377 (2010).

    Article  Google Scholar 

  6. Yu. S. Tsyganov and A. N. Polyakov, “Real-time operating mode with DSSSD detector to search for short correlation ER-ALPHA chains,” Cybern. Phys., 3 (2), 85–90 (2014).

    Google Scholar 

  7. Yu. S. Tsyganov, “Method of “active correlations” for DSSSD detector application,” Fiz. Elem. Chastits At. Yadra, 12 (1(192)), 128–135 (2015).

    Google Scholar 

  8. Yu. S. Tsyganov, “Automation of experiments at the Dubna gas-filled separator of recoil nuclei: part II,” Phys. Part. Nucl. Lett., 12 (2), 349–354 (2015).

    Article  Google Scholar 

  9. Yu. S. Tsyganov, “Elements of experiments automation on the Dubna gas-filled nuclei separator plant,” Phys. Part. Nucl. Lett., 12 (1), 74–82 (2015).

    Article  MathSciNet  Google Scholar 

  10. Yu. S. Tsyganov, “On detecting rare events of ER-a-SF type,” JINR Comm. P13–2009–79 (Dubna, 2009).

    Google Scholar 

  11. Yu. S. Tsyganov, “Synthesis of new superheavy elements using the Dubna gas–filled recoil separator: The complex of technologies,” Phys. Part. Nucl., 45 817–847 (2014).

    Article  Google Scholar 

  12. Yu. S. Tsyganov, “Detection of highly ionizing particles: Nonlinear near-surface phenomena in silicon radiation detectors,” Phys. Part. Nucl., 44 92–114 (2013).

    Article  Google Scholar 

  13. Yu. S. Tsyganov, “Gas–filled recoil separator: Software, algorithms,” Phys. Part. Nucl., 42 812 (2011).

    Article  Google Scholar 

  14. Yu. S. Tsyganov, A. N. Polyakov, and A. M. Sukhov, “Integrated PC-based system for detecting and parameter monitoring at the Dubna gas-filled recoil separator,” In. Proc. 4th Int. Conf. NPAE-2012, Kyev, Ukraine, 2012, Part II, 412–414.

    Google Scholar 

  15. Yu. S. Tsyganov, V. G. Subbotin, A. N. Polyakov, A. M. Sukhov, S. Iliev, A. N. Mezentsev, and D. V. Vacatov, “Focal plane detector of the Dubna gasfilled recoil separator,” Nucl. Inst. Meth. A, 392, 197–201 (1997).

    Article  ADS  Google Scholar 

  16. Yu. S. Tsyganov, “An extended real-time algorithm for radical suppression of background products in heavyion-induced nuclear reactions,” Phys. Part. Nucl. Lett., 4 (4), 363–366 (2007).

    Article  MathSciNet  Google Scholar 

  17. Yu. S. Tsyganov and A. N. Polyakov, “Computing at the Dubna gas-filled recoil separator,” Nucl. Inst. Meth. A, 558, 329–332 (2006).

    Article  ADS  Google Scholar 

  18. A. N. Polyakov, A. N. Sukhov, and Yu. S. Tsyganov, “On-line monitoring system of the Dubna gas-filled recoil separator,” In Proc. NEC’ 2007 Int. Symp., Varna, Bulgaria, 2007, 390–392.

    Google Scholar 

  19. Yu. S. Tsyganov, A. N. Polyakov, A. A. Voinov, and M. V. Shumeiko, “New detection system for heavyelement research,” In Proc. NEC’ 2013 Int. Symp., Varna, Bulgaria, 2013, 250–256.

    Google Scholar 

  20. Yu. S. Tsyganov, A. M. Sukhov, A. N. Polyakov, A. B. Yakushev, and D. V. Vakatov, “Real-time mode detection of heavy-ion induced nuclear reaction products,” Nucl. Inst. Meth. A, 477, 406–409 (2002).

    Article  ADS  Google Scholar 

  21. Yu. S. Tsyganov, “A multi-interval theory for active correlations technique,” Phys. Part. Nucl. Lett., 6 (1), 56–62 (2009).

    Article  Google Scholar 

  22. Yu. S. Tsyganov, “Detection of ultra-rare a-decays of superheavy nuclei,” Nucl. Inst. Meth. A, 573, 161–164 (2007).

    Article  ADS  Google Scholar 

  23. Yu. S. Tsyganov, “A reasonable extension of alpha-alpha correlation technique,” Appl. Radiat. Isotopes, 48 (4), 541–544 (1997).

    Article  MathSciNet  Google Scholar 

  24. Yu. S. Tsyganov, “A code for visual monitoring of spectrometric information,” JINR Comm. R10–98–20 (Dubna, 1998).

    Google Scholar 

  25. Yu. S. Tsyganov, A. N. Polyakov, and A. M. Sukhov, “Visual application for beam associated system of gas–filled separator”, JINR Comm. E10–99–36 (Dubna, 1999).

    Google Scholar 

  26. V. E. Zhuchko and Yu. S. Tsyganov, “A Measurement and software module for spectrometry of nuclear reaction products,” JINR Comm. P7–89–451 (Dubna, 1989).

    Google Scholar 

  27. A. Kuznetsov and E. Kuznetsov, “Electronic devices for constructing a multichannel data acquisition system,” In Proc. NEC’ 2009 Int. Symp., Varna, Bulgaria, 2009, 173–179.

    Google Scholar 

  28. V. G. Subbotin, A. A. Voinov, and S. N. Iliev, “A generator of spectrometric pulses with stable amplitude,” Prib. Tekh. Eksp., No., 5, 153–154 (2005).

    Google Scholar 

  29. A. N. Kuznetsov, V. F. Kushniruk, O. K. Nefed’ev, A. V. Rykhlyuk, V. G. Subbotin, V. I. Tomin, Yu. P. Kharitonov, and Yu. S. Tsyganov, “A rare a decay spectrometer,” Prib. Tekh. Eksp., No., 1, 36–39 (1987).

    Google Scholar 

  30. Yu. S. Tsyganov, “On some specific features of detecting implanted heavy nuclei,” JINR Comm. P7–91–565 (Dubna, 1991).

    Google Scholar 

  31. Yu. Ts. Oganessian, V. K. Utyonkov, Yu. V. Lobanov, F. Sh. Abdullin, A. N. Polyakov, I. V. Shirokovsky, Yu. S. Tsyganov, A. N. Mezentsev, S. Iliev, V. G. Subbotin, A. M. Sukhov, G. V. Buklanov, K. Subotic, and Yu. A. Lazarev, “Average charge states of heavy atoms in dilute hydrogen,” Phys. Rev. C:, 64, 064309 (2001).

    Article  ADS  Google Scholar 

  32. Yu. Ts. Oganessian, Yu. V. Lobanov, A. G. Popeko, F. Sh. Abdullin, G. G. Gulbekyan, Yu. P. Kharitonov, Yu. S. Tsyganov, and V. E. Zhuchko, “An attempt to synthesize element 110 in the reaction 40Ar + 236U,” In Proc. Int. Conf. Ser. No.132: Section 4, 6th Int. Conf. on Nuclei far from Stability & 9th Int. Conf. on Atomic Masses and Fundamental Constants, Bernkastel–Kues, Germany, 1992.

    Google Scholar 

  33. V. A. Antykhov, I. N. Churin, and N. I. Zhuravlev, “Digital CAMAC modules,” JINR Comm. P10–87–928 (Dubna, 1987).

    Google Scholar 

  34. Yu. B. Semenov, V. E. Zhuchko, and D. V. Kamanin, “Interface for the KK009/KK012 CAMAC controllers in the PCI standard,” FLNR, JINR Sci. Rep. 20012002, ed. By A. G. Popeko (Dubna, 2003).

    Google Scholar 

  35. V. G. Subbotin, S. N. Iliev, A. M. Sukhov, Yu. S. Tsyganov, A. N. Polyakov, V. I. Tomin, and A. A. Voinov, “The detection system of the Dubna gas-filled recoil separator,” Acta Phys. Polonica. B, 34 (4), 2159–2162 (2003).

    ADS  Google Scholar 

  36. A. N. Mezentsev, Yu. V. Lobanov, A. N. Polyakov, Yu. S. Tsyganov, and I. Ivanova, “Low pressure TOF module,” FLNR, JINR Sci. Report “Heavy ion physics 1992–1993” (Dubna, 1993).

    Google Scholar 

  37. N. I. Zhuravlev, “CAMAC modules,” JINR Comm. 10-8754 (Dubna, 1975).

    Google Scholar 

  38. I. N. Churin, “Crate controller KK-009,” JINR Comm. P10–90–589 (Dubna, 1990).

    Google Scholar 

  39. A. M. Sukhov, V. G. Subbotin, S. N. Iliev, Yu. S. Tsyganov, A. M. Zubareva, and A. N. Polyakov, “Crate controller KK-202,” JINR Comm. P13–96–371 (Dubna, 1996).

    Google Scholar 

  40. N. I. Zhuravlev, “Camac modules”, JINR Comm. P10-95-284 (Dubna, 1995).

    Google Scholar 

  41. Yu. Ts. Oganessian, F. Sh. Abdullin, C. Alexander, J. Binder, R. A. Boll, S. N. Dmitriev, J. Ezold, K. Felker, G. M. Gostic, R. K. Grzywacz, J. H. Hamilton, R. A. Henderson, M. G. Itkis, K. Miernik, D. Miller, K. J. Moody, A. N. Polyakov, A. V. Ramayya, J. B. Roberto, M. A. Ryabinin, K. P. Rykaczewsky, R. N. Sagaidak, D. A. Shaughnessy, I. V. Shirokovsky, M. V. Shumeiko, M. A. Stoyer, N. J. Stoyer, V. G. Subbotin, A. M. Sukhov, Yu. S. Tsyganov, V. K. Utyonkov, A. A. Voinov, and G. K. Vostokin, “Production and decay of the heaviest odd-Z nuclei in the 249Bk + 48Ca reaction,” J. Phys. Conference Series, 580, 012038 (2015).

    Article  ADS  Google Scholar 

  42. Yu. Ts. Oganessian, F. Sh. Abdullin, C. Alexander, J. Binder, R. A. Boll, S. N. Dmitriev, J. Ezold, K. Felker, G. M. Gostic, R. K. Grzywacz, J. H. Hamilton, R. A. Henderson, M. G. Itkis, K. Miernik, D. Miller, K. J. Moody, A. N. Polyakov, A. V. Ramayya, J. B. Roberto, M. A. Ryabinin, K. P. Rykaczewsky, R. N. Sagaidak, D. A. Shaughnessy, I. V. Shirokovsky, M. V. Shumeiko, M. A. Stoyer, N. J. Stoyer, V. G. Subbotin, A. M. Sukhov, Yu. S. Tsyganov, V. K. Utyonkov, A. A. Voinov, and G. K. Vostokin, “Production and decay of heaviest nuclei 293, 294117 and 294118,” Phys. Rev. Lett, 109, 162501 (2012).

    Article  ADS  Google Scholar 

  43. Yu. Ts. Oganessian and V. K. Utyonkov, “Super-heavy element research,” Rep. Progress Phys., 78, 036301 (2015).

    Article  ADS  Google Scholar 

  44. A. A. Kas’yanov, V. B. Kutner, V. M. Rybin, A. M. Sukhov, Yu. P. Tret’yakov, V. G. Subbotin, and B. V. Fefilov, “A microprocessor sybsystem for extreme control of cyclotron U-400 beam current via ion source mode variation,” Prib. Tekh. Eksp., No., 6, 82–86 (1989).

    Google Scholar 

  45. V. B. Zager and A. I. Krylov, “Visualization, monitoring and processing of large data sets from accelerator control system,” In Proc. NEC’2013 XXIV Int. Symp. Varna, Bulgaria, 2013, 238.

    Google Scholar 

  46. V. Aleynikov, A. Krylov, and V. Zager, “Web monitoring of physical facilities at the FLNR,” In Proc. of NEC’2009 XXIII Int. Symp., Varna, Bulgaria, 2009, 29.

    Google Scholar 

  47. Diodes. Reference book (Radio I Svyaz, Moscow, 1990) [in Russian].

  48. http://wwwblmsru/mks

  49. http://wwwpfeifer-vacuumnet

  50. Yu. S. Tsyganov, “Pseudo-real-time PC-based code for extraction of short recoil-alpha energy-time-position correlated sequences,” In Proc. XVII Nucl. Electronics Int. Symp., Varna, Bulgaria, 1997, 15–21.

    Google Scholar 

  51. Yu. S. Tsyganov and A. N. Polyakov, “A PC-based code operating with an E-TOF detecting module in obtaining short a–a correlated sequences for heavy ion reaction products,” Appl. Radiat. Isotopes, 47 (4), 451–454 (1996).

    Article  Google Scholar 

  52. V. B. Zlokazov and Yu. S. Tsyganov, “Half-life estimation under indefinite “mother-daughter” relation,” Phys Part Nucl. Lett. 7 (6), 401–405 (2010).

    Article  Google Scholar 

  53. Yu. S. Tsyganov, “Physical basis of critical analysis,” Phys. Part. Nucl. Lett, 11 (6), 1–6 (2014).

    Article  Google Scholar 

  54. N. B. Zlokazov, V. K. Utyonkov, and Yu. S. Tsyganov, “VSHEC–a program for an automatic spectrum calibration,” CPC, 184, 428–431 (2013).

    ADS  Google Scholar 

  55. B. D. Wilkins, M. J. Fluss, S. B. Kaufman, C. E. Gross, and E. P. Steinberg, “Pulse-height defects for heavy ions in a silicon surface-barrier detector,” Nucl. Instrum. Methods Phys. Res. 92, 381 (1971).

    Article  ADS  Google Scholar 

  56. W. Seibt, P. Tove, and K. Sundstroem, “Model of track destruction for highly ionizing particles,” Nucl. Instrum. Methods Phys. Res., A, 113, 317 (1973).

    Article  Google Scholar 

  57. Yu. S. Tsyganov, “Parameter of equilibrium charge states distribution width for calculation of heavy recoil spectra,” Nucl. Instrum. Methods Phys. Res., A, 378, 356–359 (1996).

    Article  ADS  Google Scholar 

  58. V. F. Kushniruk and Yu. S. Tsyganov, “A note on collected-charge fluctuations in silicon surface-barrier detectors at heavy ion registration,” Appl. Radiat. Isotopes, 48 (5), 691–693 (1997).

    Article  Google Scholar 

  59. Yu. S. Tsyganov, “Complex signal amplitude analysis for complete fusion reaction products,” Fiz. Elem. Chastits At. Yadra Pis’ma, 8 (1(164)), 63–67 (2011).

    Google Scholar 

  60. Rim Yun Sen and Yu. S. Tsyganov “On registration of spontaneous fission of nuclei implanted in silicon surface barrier detector,” JINR Comm. P7-90-112 (Dubna, 1990).

    Google Scholar 

  61. Yu. S. Tsyganov, “An approximate formula for angular dependence of the residual defect in a silicon surface barrier detector,” Nucl. Instrum. Methods A, 363, 611–613 (1995).

    Article  ADS  Google Scholar 

  62. E. K. Khalfin, “On the Small Deviation from Exponential Law,” Zh. Eksp. Teor. Fiz., 33, 1371 (1958).

    Google Scholar 

  63. L. Nadderd, Yu. S. Tsyganov, K. Subotic, A. N. Polyakov, Yu. V. Lobanov, and A. V. Rykhlyuk, “4p detector for study of Zeno effect using 220Rn? 216Po a–a correlated chains,” In Proc. NEC’2007 XXI Int. Symp., Varna, Bulgaria, 2007, 362–367.

    Google Scholar 

  64. L. Nadderd, A. N. Polyakov, K. Subotic, Yu. S. Tsyganov, and V. B. Zlokazov, “New proposals for Zeno effect study,” In Proc. NEC’2009 XXIII Int. Symp., Varna, Bulgaria, 2009, 220–222.

    Google Scholar 

  65. D. Novkovic, L. Nadderd, A. Kandic, I. Vukanac, M. Durasevic, and D. Jordanov, “Testing the exponential decay law of gold 198Au,” Nucl. Instrum. Methods A, 566, 477–480 (2006).

    Article  ADS  Google Scholar 

  66. E. Rutherford, On the alpha-decay (Sitzung Acad. Wiss. Wien, Math.-Natur. Kl, 1911).

    Google Scholar 

  67. A. M. Sukhov and A. N. Polyakov, “Development of new GFRS monitoring system” (private communication).

  68. Yu. S. Tsyganov, A. M. Sukhov, and A. N. Polyakov, “Monitoring parameters of long-term experiments in heavy ion beams,” In Proc. SCP’2005 XXIII Int. Symp., St. Petersburg, Russia, 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. S. Tsyganov.

Additional information

Original Russian Text © Yu.S. Tsyganov, 2016, published in Fizika Elementarnykh Chastits i Atomnogo Yadra, 2016, Vol. 47, No. 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsyganov, Y.S. Automation of experiments at Dubna Gas-Filled Recoil Separator. Phys. Part. Nuclei 47, 73–107 (2016). https://doi.org/10.1134/S1063779616010044

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779616010044

Keywords

Navigation