Skip to main content
Log in

Radioactive nuclear beams of COMBAS facility

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The basic ion-optical characteristics of the luminosity and the high-resolution of kinematic separator COMBAS realized for the first time on the strong focusing principle are presented. The developed facility allows to separate the high-intensity secondary radioactive beams in a wide range of mass numbers A and atomic numbers Z which are produced in heavy ion reactions in the energy range of 20 ≤ E ≤ 100 MeV/A (Fermi energy domain). Two distinct detector systems such as realized Si strip detector telescope and the promising development of the three dimension time-projection chamber are discussed. Program of the investigations of nuclear reaction mechanisms at intermediate energies of 20–100 MeV/A, measurement of the radii of unstable nuclei, study of the cluster structure of light nuclei near the nuclear drip-line and search of 26,28O resonances in exchange reactions is proposed. The upgrading of experimental facility by the integration of COMBAS separator with the Ion Catcher is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Anne, D. Bazin, A. C. Mueller, et al., “The achromatic spectrometer LISE at GANIL,” Nucl. Instr. Meth., Ser. A, 257, 215–232 (1987).

    Article  ADS  Google Scholar 

  2. B. M. Sherrill, D. J. Morrissey, J. A. Nolen, and J. A. Winger, “The A1200 projectile fragment separator,” Nucl. Instr. Meth., Ser. B, 56/57, 1106–1110 (1991).

    Article  ADS  Google Scholar 

  3. T. Kubo, M. Ishihara, N. Inabe, et al., “The RIKEN radioactive beam facility,” Nucl. Inst. Meth., Ser. B, 70, 309–319 (1992).

    Article  ADS  Google Scholar 

  4. H. Geissel, P. Armbruster, K. H. Behr, et al., “The GSI Projectile Fragment Separator (FRS): a versatile magnetic system for relativistic heavy ions,” Nucl. Instr. Meth., Ser. B, 70, 286–297 (1992).

    Article  ADS  Google Scholar 

  5. A. G. Artukh, G. F. Gridnev, V. L. Mikheev, et al., “The projectile-fragment separator COMBAS,” Proc. of The Second Int. Conference on Radioactive Nuclear Beams, Louvain-la-Neuve (Belgium, 1991), pp. 21–26.

    Google Scholar 

  6. A. G. Artukh, G. F. Gridnev, M. Gruszecki, et al., “Wide aperture kinematic separator COMBAS realized on the strong focusing principle,” Nucl. Instr. Meth., Ser. A, 426, 605–617 (1999).

    Article  ADS  Google Scholar 

  7. A. G. Artukh, Yu. M. Sereda, S. A. Klygin, et al., “The COMBAS fragment separator,” Instrum. Exp. Tech., 54, 668–681 (2011).

    Article  Google Scholar 

  8. Yu. M. Sereda, S. M. Lukyanov, A. G. Artukh, et al., “Investigation of the fragmentation of 20Ne and 40Ar ions at the COMBAS setup,” Phys. At. Nucl., 77 (7), 817–823 (2014).

    Article  Google Scholar 

  9. B. M. Sherrill, “Radioactive nuclear beam facilities based on projectile fragmentation,” Proc. of the Second Int. Conference on Radioactive Nuclear Beams (Louvain-la-Neuve, Belgium, 1991), pp. 3–20.

    Google Scholar 

  10. G. A. Kononenko, A. G. Artukh, A. N. Vorontsov, et al., “Detection system of the COMBAS fragment separator,” Instrum. Exp. Tech., 58, 337–344 (2015).

    Article  Google Scholar 

  11. A. G. Artukh, Y. A. Budagov, V. Hlinka, et al., “Time projection chamber for experiments with heavy ions,” J. Phys., Ser. G, 17, S477–S481 (1991).

    Article  ADS  Google Scholar 

  12. V. Hlinka, M. Ivanov, R. Janik, et al., “Time projection chambers for tracking and identification of radioactive beams,” Nucl. Instr. Meth., Ser. A, 419, 503–510 (1998).

    Article  ADS  Google Scholar 

  13. U. Schroder and J. R. Huizinga, “Damped nuclear reactions,” inTreatise on Heavy-Ion Science, Vol. 2, Ed. by A. Bromley (Plenum, New York, 1984), pp.113–726.

    Google Scholar 

  14. J. Aichelin and G. F. Bertsch, “Numerical simulation of medium energy heavy ion reactions,” Phys. Rev., Ser. C, 31, 1730–1738 (1985).

    Article  ADS  Google Scholar 

  15. G. F. Bertsch and S. Das Gupta, “A guide to microscopic models for intermediate energy heavy-ion collisions,” Phys. Rep., 160, 189–233 (1988).

    Article  ADS  Google Scholar 

  16. L. Tassan-Got and C. Stephan, Deep inelastic transfers: a way to dissipate energy and angular momentum for reactions in the Fermi energy domain,” Nucl. Phys., Ser. A 524, 121–140 (1991).

    Article  ADS  Google Scholar 

  17. H. Fuchs and K. Moehring, “Heavy-ion break-up processes in the Fermi energy range,” Rep. Prog. Phys., 57, 231–324 (1994).

    Article  ADS  Google Scholar 

  18. A. G. Artukh, G. F. Gridnev, M. Gruszecki, et al., “Forward-angle yields of 2 < Z < 11 isotopes in the reaction of 18O (35 A MeV) with Be,” Phys. At. Nucl., 65 (3), 393–399 (2002).

    Article  Google Scholar 

  19. A. G. Artukh, G. F. Gridnev, M. Gruszecki, et al., “Some regularities in the beam-direct production of isotopes with 2 < Z < 11 induced in reactions of 18O (35 A MeV) with Be and Ta,” Nucl. Phys., Ser. A, 701, 96–99 (2002).

    Article  ADS  Google Scholar 

  20. A. G. Artukh, A. G. Semchenkov, G. F. Gridnev, et al., “Forward-angle yields of isotopes with 3 = Z = 10 in the reaction of 22Ne (40 AMeV) with Be,” Proc. of Int. Symposium on Exotic Nuclei (Lake Baikal, Russia, 2001), pp. 269–276.

    Google Scholar 

  21. A. S. Goldhaber, “Statistical model of fragmentation processes,” Phys. Lett., Ser. B, 53, 306–308 (1974).

    Article  ADS  Google Scholar 

  22. J. Aichelin, “Quantum” molecular dynamics a dynamical microscopic N-body approach to investigate fragment formation and the nuclear equation of state in heavy ion collisions,” Phys. Rep., 202, 233–360 (1991).

    Article  ADS  Google Scholar 

  23. D. H. Boal and J. N. Glosli, “Computational model for nuclear reaction studies: quasiparticle dynamics,” Phys. Rev., Ser. C, 38, 2621–2629 (1988).

    Article  ADS  Google Scholar 

  24. J. Lukasik and Z. Majka, “CHIMERA—microscopic approach to heavy-ion collisions at intermediate energies,” Acta. Phys. Pol., Ser. B, 24 (12), 1959–1980 (1993).

    Google Scholar 

  25. A. G. Artukh, A. Budzanowski, G. Kaminski, W. Kantor, S. A. Klygin, E. Kozik, O. V. Semchenkova, Yu. M. Sereda, J. Szmider, Yu. G. Teterev, and A. N. Vorontzov, “QMD approach in description of the 18O + 9Be and 18O + 181Ta reactions at Eproj = 35 AMeV,” Acta. Phys. Polon. B, 37, 1875–1892 (2006).

    ADS  Google Scholar 

  26. A. G. Artukh, A. Budzanowski, G. Kaminski, W. Kantor, S. A. Klygin, E. Kozik, Yu. M. Sereda, J. Szmider, Yu. G. Teterev, and A. N. Voronzow, “On the mechanism of forward emitted fragment production in 22Ne + 9Be reaction in the vicinity of the Fermi energy,” Acta Phys. Polon. B, 40, 153–163 (2009).

    ADS  Google Scholar 

  27. T. I. Mikhailova, B. Erdemchimeg, G. Kaminski, A. G. Artyukh, M. Colonna, M. di Toro, I. N. Mikhailov, Yu. M. Sereda, and H. H. Wolter, “Asymmetry of velocity distributions in peripheral reactions with heavy ions at Fermi energy,” Bull. Russ. Acad. Sci.: Phys., 73, 898–903 (2009)

    Article  Google Scholar 

  28. T. I. Mikhailova, B. Erdemchimeg, G. Kaminski, A. G. Artyukh, M. Colonna, M. di Toro, I. N. Mikhailov, Yu. M. Sereda, and H. H. Wolter, “Fragment production in peripheral heavy ion collisions at Fermi energy in transport models,” Int. J. Mod. Phys. E, 19, 678–684 (2010).

    Article  ADS  Google Scholar 

  29. J. P. Bondorf, A. S. Botvina, A. S. Iljinov, et al., “Statistical multifragmentation of nuclei,” Phys. Rep., 257, 133–221 (1995)

    Article  ADS  Google Scholar 

  30. D. J. Morrissey, “Systematics of momentum distributions from reactions with relativistic ions,” Phys. Rev. C, 39, 460–470 (1989).

    Article  ADS  Google Scholar 

  31. B. Blank, S. Andriamonje, R. Moral, J. P. Dufour, A. Fleury, T. Josso, M. S. Pravikoff, S. Czajkowski, Z. Janas, A. Piechaczek, E. Roeckl, K. H. Schmidt, K. Summerer, W. Trinder, M. Weber, et al., “Production cross sections and the particle stability of proton-rich nuclei from 58Ni fragmentation,” Phys. Rev. C, 50, 2398–2407 (1994).

    Article  ADS  Google Scholar 

  32. M. B. Tsang, C. K. Gelbke, X. D. Liu, W. G. Lynch, W. P. Tan, G. Verde, H. S. Xu, W. A. Friedman, R. Donangelo, S. R. Souza, C. B. Das, S. Gupta, and D. Zhabinsky, “Isoscaling in statistical models,” Phys. Rev. C, 64, 054615-1-8 (2001).

  33. M. Mocko, M. B. Tsang, D. Lacroix, A. Ono, P. Danielewicz, W. G. Lynch, and R. J. Charity, “Transport model simulations of projectile fragmentation reactions at 140 MeV/nucleon,” Phys. Rev. C, 78, 024612-1-12 (2008).

  34. J. F. Bruandet, “Direct measurements of total reaction cross sections between heavy ions from 10 to 100MeV/A,” J. Phys., 47, 4–125 (1986).

    Google Scholar 

  35. S. Kox, A. Gamp, C. Perrin, J. Arvieux, R. Bertholet, J. F. Bruandet, M. Buenerd, R. Cherkaoui, A. J. Cole, Y. El-Masri, N. Longequeue, J. Menet, F. Merchez, and J. B. Viano, “Trend of total reaction cross sections for heavy ion collisions in the intermediate energy range,” Phys. Rev. C, 35, 1678–1691 (1987).

    Article  ADS  Google Scholar 

  36. A. Ozawa, T. Suzuki, and I. Tanihata, “Nuclear size and related topics,” Nucl. Phys., 693, 32–62 (2001)

    Article  Google Scholar 

  37. O. M. Knyazkov, I. N. Kukhtina, and S. A. Fayans, “Cross section and structure of light exotic nuclei,” Phys. Part. Nucl., 30, 870–908 (1999)

    Google Scholar 

  38. B. Erdemchimeg, A. G. Artukh, S. A. Klygin, G. A. Kononenko, D. A. Kyslukha, Yu. M. Sereda, A. N. Vorontzov, S. M. Lukyanov, Yu. E. Penionzhkevich, S. Davaa, G. Khuukhenkhuu, C. Borcea, F. Rotaru, M. Stanoiu, L. Martina, F. Saillant, and B. Raine, “Measurements of the total reaction cross sections for 6,8He and 8,9Li nuclei with energies of (25–45)A MeV on natAl, natTa and natPb,” in Proceedings of the International Symposium on Exotic Nuclei, Kaliningrad, Russia, 2014, pp. 148–154.

    Google Scholar 

  39. W. Chung and B. H. Widenthal, “Collapse of the conventional shell-model ordering in the very-neutronrich isotopes of Na and Mg,” Phys. Rev. C, 22, 2260–2262 (1980).

    Article  ADS  Google Scholar 

  40. P. Roussel-Chomaz, N. Alamanos, F. Auger, J. Barrette, B. Berthier, B. Fernandez, L. Papineau, H. Doubre, and W. Mittig, “16O elastic scattering at Elab = 94 MeV/nucleon,” Nucl. Phys. A, 477, 345–364 (1998).

    Article  ADS  Google Scholar 

  41. E. Liatard, J. F. Bruandet, F. Glasser, S. Kox, Tsan Ung Chan, G. J. Costa, C. Heitz, Y. El Masri, F. Hanappe, R. Bimbot, D. Guillemaud-Mueller, and A. C. Mueller, “Matter distribution in neutron-rich light nuclei and total reaction cross-section,” Europhys. Lett., 13, 401–404 (1990).

    Article  ADS  Google Scholar 

  42. A. G. Artukh, S. N. Ershov, F. A. Gareev, G. F. Gridnev, M. Grushecki, S. Kliczewski, M. Madeja, S. Yu. Shmakov, J. Szmider, Yu. G. Teterev, V. V. Uzhinski, K. Holy, P. Povinec, B. Sitar, Yu. M. Sereda, and I. N. Vishnevski, “Study of properties of Ne Al neutron rich isotopes at and near N = 20 magic shell using elastic scattering in inverse kinematics,” Preprint JINR E7-93-74 (Dubna, 1993).

    Google Scholar 

  43. A. di Pietro, G. Risi, V. Scuderi, L. Acosta, F. Amorini, M. J. G. Borge, P. Figuera, M. Fisichella, L. M. Fraile, J. Gomez-Camacho, H. Jeppesen, M. Lattuada, I. Marte, M. Milin, A. Musumarra, et al., “Elastic scattering and reaction mechanisms of the halo nucleus 11Be around the Coulomb barrier,” Phys. Rev. Lett., 105, 022701-1-5 (2010).

  44. Y. Kanada-En’yo and H. Horiuchi, “Neutron-rich B isotopes studied with antisymmetrized molecular dynamics,” Phys. Rev. C, 52, 647–664 (1995).

    Article  ADS  Google Scholar 

  45. K. Ikeda, H. Takigawa, and H. Horiuchi, “The systematic structure-change into the molecule-like structures in the self-conjugate 4n nuclei,” Progr. Theor. Phys., 68, 464–475 (1968).

    Article  Google Scholar 

  46. Y. Kanada-En’yo, H. Horiuchi, and A. Ono, “Structure of Li and Be isotopes studied with antisymmetrized molecular dynamics,” Phys. Rev. C, 52, 628–646 (1995).

    Article  ADS  Google Scholar 

  47. P. Descouvement, “Microscopic study of a clustering in the 9,10,11 Be isotopes,” Nucl. Phys. A, 699, 463–478 (2002).

    Article  ADS  Google Scholar 

  48. M. Freer, J. C. Angelique, L. Axelsson, B. Benoit, U.Bergmann, W. N. Catford, S. P. G. Chappell, N. M. Clarke, N. Curtis, A. D’Arrigo, E. de Goes Brennard, O. Dorvaux, B. R. Fulton, G. Giardina, C. Gregori, et al., “Exotic molecular states in 12Be,” Phys. Rev. Lett., 82, 1383–1386 (1999).

    Article  ADS  Google Scholar 

  49. A. G. Artukh, A. S. Denikin, Yu. M. Sereda, S. A. Klygin, G. A. Kononenko, Yu. G. Teterev, A. N. Vorontsov, G. Kaminski, and B. Erdemchimeg, “Reconstructiong the parameters of cluster breakup of light nuclei,” Instrum. Exp. Tech., 52, 13–24 (2009).

    Article  Google Scholar 

  50. A. S. Jensen, K. Riisager, and D. V. Fedorov, “Structure and reactions of quantum halos,” Rev. Mod. Phys., 76, 215–261 (2004).

    Article  ADS  Google Scholar 

  51. D. Guillemaud-Mueller, J. C. Jacmart, E. Kashy, A. Latimier, A. C. Mueller, F. Pougheon, A. Richard, Yu. E. Penionzhkevich, A. G. Artukh, A. V. Belozyorov, S. M. Lukyanov, R. Anne, P. Bricault, C. Detraz, M. Lewitowicz, et al., “Particle stability of the isotopes 26O and 32Ne in the reaction 44 MeV/nucleon 48Ca + Ta,” Phys. Rev. C, 41, 937–941 (1990).

    Article  ADS  Google Scholar 

  52. M. Fauerbach, D. J. Morrissey, W. Benenson, B. A. Brown, M. Hellstrom, J. H. Kelley, R. A. Kryger, R. Pfaff, C. F. Powel, and B. M. Sherrill, “New search for 26O,” Phys. Rev. C, 53, 647–651 (1996).

    Article  ADS  Google Scholar 

  53. O. Tarasov, R. Allatt, J. C. Angelique, R. Anne, C. Borcea, Z. Dlouhy, C. Donzaud, S. Grevy, D. GuillemaudMueller, M. Lewitowicz, S. Lukyanov, A. C. Mueller, F. Nowacki, Yu. Ts. Oganessian, N. A. Orr, et al., “Search for 28O and study of neutron-rich nuclei near the N = 20 shell closure,” Phys. Lett. B, 409, 64–70 (1997).

    Article  ADS  Google Scholar 

  54. H. Sakurai, S. M. Lukyanov, M. Notani, N. Aoi, D. Beaumel, N. Fukuda, M. Hirai, E. Ideguchi, N. Imai, M. Ishihara, H. Iwasaki, T. Kubo, K. Kusaka, H. Kumagai, T. Nakamura, et al., “Evidence for particle stability of 31F and particle instability of 25N and 28O,” Phys. Lett. B, 448, 180–184 (1999).

    Article  ADS  Google Scholar 

  55. C. R. Hoffman, T. Baumann, D. Bazin, J. Brown, G. Christian, D. H. Denby, P. A. Young, J. E. Finck, N. Frank, J. Hinnefeld, S. Mosby, W. A. Peters, W. F. Rogers, A. Schiller, et al., “Evidence for a doubly magic 24O,” Phys. Lett. B, 672, 17–21 (2009).

    Article  ADS  Google Scholar 

  56. M. Thoennessen, T. Baumann, B. A. Brown, J. Enders, N. Frank, P. G. Hansen, P. Heckman, B. A. Luther, J. Seitz, A. Stolz, and E. Tryggestad, “Single proton knock-out reactions from 24,25,26F,” Phys. Rev. C, 68, 044318-1-5 (2003).

  57. D. Bazin, B. A. Brown, C. M. Campbell, J. A. Church, D. C. Dinca, J. Enders, A. Gade, T. Glasmacher, P. G. Hansen, W. F. Mueller, H. Olliver, B. C. Perry, B. M. Sherrill, J. R. Terry, and J. A. Tostevin, “New direct reaction: two-proton knockout from neutron-rich nuclei,” Phys. Rev. Lett., 91, 012501-1-4 (2003).

  58. A. G. Artukh, G. F. Gridnev, A. N. Denikin, S. A. Klygin, V. Z. Maidikov, S. V. Perov, A. G. Semchenkov, O. V. Semchenkova, Yu. M. Sereda, Yu. G. Teterev, U. I. Zagrebaev, N. I. Zamiatin, A. Budzanowski, F. Koscielniak, and J. Szmider, “Detecting system for correlation experiments in inverse kinematics,” in Proceedings of the International Symposium on Exotic Nuclei, Lake Baikal, Russia, 2001, pp. 682–689.

    Google Scholar 

  59. G. Savard, J. Clark, C. Boudreau, F. Buchinger, J. E. Crawford, H. Geissel, J. P. Greene, S. Gulick, A. Heinz, J. K. P. Lee, A. Levand, M. Maier, G. Munzenberg, C. Scheidenberger, D. Seweryniak, et al., “Development and operation of gas catchers to thermalize fusion–evaporation and fragmentation products,” Nucl. Instrum. Methods Phys. Res. B, 204, 582–586 (2003).

    Article  ADS  Google Scholar 

  60. M. Petrick, W. R. Plaz, K.-H. Behr, A. Brunle, L. Caceres, J. Clark, Z. Di, S. Elisseev, M. Facina, A. Fettouhi, H. Geissel, W. Huller, M. Huyse, C. Karagiannis, B. Kindler, et al., “Online test of the FRS ion catcher at GSI,” Nucl. Instrum. Methods Phys. Res. B, 266, 4493–4497 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Artukh.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Artukh, A.G., Klygin, S.A., Kononenko, G.A. et al. Radioactive nuclear beams of COMBAS facility. Phys. Part. Nuclei 47, 49–72 (2016). https://doi.org/10.1134/S1063779616010032

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779616010032

Keywords

Navigation