Skip to main content
Log in

Properties of perturbations in conformal cosmology

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

This review is centered on the properties and mechanisms underlying the generation of perturbations in models of the early Universe with conformal invariance, which could be alternatives to inflation. A detailed analysis of the properties of primary scalar perturbations, i.e., power spectrum, statistical anisotropy, and non-Gaussianity is performed within the framework of these models. Properties of primary gravitational waves are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Komatsu, et al., “Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation,” Astrophys. J. Suppl. 192, 18 (2011). arXiv:1001.4538

    Article  ADS  Google Scholar 

  2. P. A. R. Ade, et al. (Planck Collaboration), “Planck 2013 results. XVI. Cosmological parameters.” arXiv:1303.5076

  3. P. A. R. Ade, et al. (Planck Collaboration), “Planck 2013 results. XXIV. Constraints on primordial nonGaussianity.” arXiv:1303.5084

  4. A. A. Starobinskii, “Spectrum of relict gravitational radiation and the early state of the universe,” JETP Lett. 30, 682 (1979).

    ADS  Google Scholar 

  5. A. A. Starobinsky, “A new type of isotropic cosmological models without singularity,” Phys. Lett. B 91, 99 (1980).

    Article  ADS  Google Scholar 

  6. A. H. Guth, “The inflationary universe: a possible solution to the horizon and flatness problems,” Phys. Rev. D 23, 347 (1981).

    Article  ADS  Google Scholar 

  7. A. D. Linde, “A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems,” Phys. Lett. B 108, 389 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  8. A. Albrecht and P. J. Steinhardt, “Cosmology for grand unified theories with radiatively induced symmetry breaking,” Phys. Rev. Lett. 48, 1220 (1982).

    Article  ADS  Google Scholar 

  9. V. F. Mukhanov and G. V. Chibisov, “Quantum fluctuations and a nonsingular universe,” JETP Lett. 33, 532 (1981).

    ADS  Google Scholar 

  10. S. W. Hawking, “The development of irregularities in a single bubble inflationary universe,” Phys. Lett. B 115, 295 (1982).

    Article  ADS  Google Scholar 

  11. A. A. Starobinsky, “Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations,” Phys. Lett. B 117, 175 (1982).

    Article  ADS  Google Scholar 

  12. A. H. Guth and S. Y. Pi, “Fluctuations in the new inflationary universe,” Phys. Rev. Lett. 49, 1110 (1982).

    Article  ADS  Google Scholar 

  13. J. M. Bardeen, P. J. Steinhardt, and M. S. Turner, “Spontaneous creation of almost scale-free density perturbations in an inflationary universe,” Phys. Rev. D 28, 679 (1983).

    Article  ADS  Google Scholar 

  14. J. L. Lehners, P. McFadden, N. Turok, and P. J. Steinhardt, “Generating ekpyrotic curvature perturbations before the Big Bang,” Phys. Rev. D 76, 103501 (2007). arXiv:hep-th/0702153

    Article  MathSciNet  ADS  Google Scholar 

  15. E. I. Buchbinder, J. Khoury, and B. A. Ovrut, “New ekpyrotic cosmology,” Phys. Rev. D 76, 123503 (2007). arXiv:hep-th/0702154

    Article  MathSciNet  ADS  Google Scholar 

  16. P. Creminelli and L. Senatore, “A smooth bouncing cosmology with scale invariant spectrum,” J. Cosmol. Astropart. Phys. 0711, 010 (2007). arXiv:hep-th/0702165

    Article  ADS  Google Scholar 

  17. A. Notari and A. Riotto, “Isocurvature perturbations in the ekpyrotic universe,” Nucl. Phys. B 644, 371 (2002). arXiv:hep-th/0205019

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. F. Di Marco, F. Finelli, and R. Brandenberger, “Adiabatic and isocurvature perturbations for multifield generalized Einstein models,” Phys. Rev. D 67, 063512 (2003). arXiv:astro-ph/0211276

    Article  ADS  Google Scholar 

  19. J. Khoury, B. A. Ovrut, P. J. Steinhardt, and N. Turok, “The ekpyrotic universe: colliding branes and the origin of the hot Big Bang,” Phys. Rev. D 64, 123522 (2001). arXiv:hep-th/0103239

    Article  MathSciNet  ADS  Google Scholar 

  20. J. Khoury, B. A. Ovrut, N. Seiberg, P. J. Steinhardt, N. Turok, “From Big Crunch to Big Bang,” Phys. Rev. D 65, 086007 (2002). arXiv:hep-th/0108187

    Article  ADS  Google Scholar 

  21. D. Wands, “Duality invariance of cosmological perturbation spectra,” Phys. Rev. D 60, 023507 (1999). arXiv:gr-qc/9809062

    Article  ADS  Google Scholar 

  22. F. Finelli and R. Brandenberger, “On the generation of a scale-invariant spectrum of adiabatic fluctuations in cosmological models with a contracting phase,” Phys. Rev. D 65, 103522 (2002). arXiv:hep-th/0112249

    Article  ADS  Google Scholar 

  23. L. E. Allen and D. Wands, “Cosmological perturbations through a simple bounce,” Phys. Rev. D 70, 063515 (2004). arXiv:astro-ph/0404441

    Article  ADS  Google Scholar 

  24. R. H. Brandenberger, “Cosmology of the very early universe,” in AIP Conf. Proc., 1268, 3 (2010). arXiv:1003.1745

    Article  ADS  Google Scholar 

  25. S. Mukohyama, “Scale-invariant cosmological perturbations from Horava–Lifshitz gravity without inflation,” J. Cosmol. Astropart. Phys. 0906, 001 (2009). arXiv:0904.2190

    Article  ADS  Google Scholar 

  26. V. A. Rubakov, “Harrison–Zeldovich spectrum from conformal invariance,” J. Cosmol. Astropart. Phys. 0909, 030 (2009). arXiv:0906.3693

    Article  ADS  Google Scholar 

  27. P. Creminelli, A. Nicolis, and E. Trincherini, “Galilean genesis: an alternative to inflation,” J. Cosmol. Astropart. Phys. 1011, 021 (2010). arXiv:1007.0027

    Article  ADS  Google Scholar 

  28. M. Libanov, S. Mironov, and V. Rubakov, “Properties of scalar perturbations generated by conformal scalar field,” Prog. Theor. Phys. Suppl. 190, 120–134 (2011). arXiv:1012.5737

    Article  ADS  Google Scholar 

  29. M. Libanov, S. Mironov, and V. Rubakov, “Non-Gaussianity of scalar perturbations generated by conformal mechanisms,” Phys. Rev. D 84, 083502 (2011). arXiv:1105.6230

    Article  ADS  Google Scholar 

  30. M. Libanov and V. Rubakov, “Cosmological density perturbations from conformal scalar field: infrared properties and statistical anisotropy,” J. Cosmol. Astropart. Phys. 1011, 045 (2010). arXiv:1007.4949

    Article  ADS  Google Scholar 

  31. S. Mironov, “Pseudo-conformal universe: late-time contraction and generation of tensor modes,” Phys. Rev. D 87, 043526 (2013). arXiv:1211.0262

    Article  ADS  Google Scholar 

  32. J. K. Erickson, D. H. Wesley, P. J. Steinhardt, and N. Turok, “Kasner and Mixmaster behavior in universes with equation of state w ≥ 1,” Phys. Rev. D 69, 063514 (2004). arXiv:hep-th/0312009

    Article  MathSciNet  ADS  Google Scholar 

  33. D. Garfinkle, W. C. Lim, F. Pretorius, and P. J. Steinhardt, “Evolution to a smooth universe in an ekpyrotic contracting phase with w > 1,” Phys. Rev. D 78, 083537 (2008). arXiv:0808.0542

    Article  MathSciNet  ADS  Google Scholar 

  34. J. L. Lehners, “Ekpyrotic and cyclic cosmology,” Phys. Rep. 465, 223 (2008). arXiv:0806.1245

    Article  MathSciNet  ADS  Google Scholar 

  35. A. D. Linde and V. F. Mukhanov, “Nongaussian isocurvature perturbations from inflation,” Phys. Rev. D 56, 535 (1997). arXiv:astro-ph/9610219

    Article  ADS  Google Scholar 

  36. K. Enqvist and M. S. Sloth, “Adiabatic CMB perturbations in pre Big Bang string cosmology,” Nucl. Phys. B 626, 395 (2002). arXiv:hep-ph/0109214

    Article  ADS  Google Scholar 

  37. D. H. Lyth and D. Wands, “Generating the curvature perturbation without an inflaton,” Phys. Lett. B 524, 5 (2002). arXiv:hep-ph/0110002

    Article  ADS  MATH  Google Scholar 

  38. T. Moroi and T. Takahashi, “Effects of cosmological moduli fields on cosmic microwave background,” Phys. Lett. B 522, 215 (2001). arXiv:hep-ph/0110096

    Article  ADS  MATH  Google Scholar 

  39. K. Dimopoulos, D. H. Lyth, A. Notari, and A. Riotto, “The curvaton as a pseudo-Nambu-Goldstone boson,” J. High Energy Phys. 0307, 053 (2003). arXiv:hepph/0304050

    Article  ADS  Google Scholar 

  40. G. Dvali, A. Gruzinov, and M. Zaldarriaga, “A new mechanism for generating density perturbations from inflation,” Phys. Rev. D 69, 023505 (2004). arXiv:astro-ph/0303591

    Article  ADS  Google Scholar 

  41. L. Kofman, “Probing string theory with modulated cosmological fluctuations.” arXiv:astro-ph/0303614.

  42. G. Dvali, A. Gruzinov, and M. Zaldarriaga, “Cosmological perturbations from inhomogeneous reheating, freezeout, and mass domination,” Phys. Rev. D 69, 083505 (2004). arXiv:astro-ph/0305548

    Article  ADS  Google Scholar 

  43. V. Rubakov and M. Osipov, “Scalar tilt from broken conformal invariance,” JETP Lett. 93, 52–55 (2011). arXiv:1007.3417

    Article  ADS  Google Scholar 

  44. L. Ackerman, S. M. Carroll, and M. B. Wise, “Imprints of a primordial preferred direction on the microwave background,” Phys. Rev. D 75, 083502 (2007). arXiv:astro-ph/0701357

    Article  ADS  Google Scholar 

  45. A. R. Pullen and M. Kamionkowski, “Cosmic microwave background statistics for a direction-dependent primordial power spectrum,” Phys. Rev. D 76, 103529 (2007). arXiv:0709.1144

    Article  ADS  Google Scholar 

  46. M. A. Watanabe, S. Kanno, and J. Soda, “Inflationary universe with anisotropic hair,” Phys. Rev. Lett. 102, 191302 (2009). arXiv:0902.2833

    Article  ADS  Google Scholar 

  47. M. A. Watanabe, S. Kanno, and J. Soda, “The nature of primordial fluctuations from anisotropic inflation,” Prog. Theor. Phys. 123, 1041 (2010). arXiv:1003.0056

    Article  ADS  MATH  Google Scholar 

  48. T. R. Dulaney and M. I. Gresham, “Primordial power spectra from anisotropic inflation,” Phys. Rev. D 81, 103532 (2010). arXiv:1001.2301

    Article  ADS  Google Scholar 

  49. A. E. Gumrukcuoglu, B. Himmetoglu, and M. Peloso, “Scalar–scalar, scalar–tensor, and tensor–tensor correlators from anisotropic inflation,” Phys. Rev. D 81, 063528 (2010). arXiv:1001.4088

    Article  ADS  Google Scholar 

  50. A. E. Gumrukcuoglu, C. R. Contaldi, and M. Peloso, “CMB anomalies from relic anisotropy.” arXiv:astro-ph/0608405.

  51. A. E. Gumrukcuoglu, C. R. Contaldi, and M. Peloso, “Inflationary perturbations in anisotropic backgrounds and their imprint on the CMB,” J. Cosmol. Astropart. Phys. 0711, 005 (2007). arXiv:0707.4179

    Article  Google Scholar 

  52. K. Hinterbichler and J. Khoury, “The pseudo-conformal universe: scale invariance from spontaneous breaking of conformal symmetry,” J. Cosmol. Astropart. Phys. 1204, 023 (2012). arXiv:1106.1428

    Article  MathSciNet  ADS  Google Scholar 

  53. F. Vernizzi, “Cosmological perturbations from varying masses and couplings,” Phys. Rev. D 69, 083526 (2004). arXiv:astro-ph/0311167

    Article  MathSciNet  ADS  Google Scholar 

  54. A. Nicolis, R. Rattazzi, and E. Trincherini, “The galileon as a local modification of gravity,” Phys. Rev. D 79, 064036 (2009). arXiv:0811.2197

    Article  MathSciNet  ADS  Google Scholar 

  55. P. Creminelli, A. Joyce, J. Khoury, and M. Simonovic, J. Cosmol. Astropart. Phys. 1304, 020 (2013). arXiv:1212.3329

    Article  MathSciNet  ADS  Google Scholar 

  56. X. Chen, B. Hu, M. X. Huang, G. Shiu, and Y. Wang, “Large primordial trispectra in general single field inflation,” J. Cosmol. Astropart. Phys. 0908, 008 (2009). arXiv:0905.3494

    ADS  Google Scholar 

  57. T. Okamoto and W. Hu, “The angular trispectra of CMB temperature and polarization,” Phys. Rev. D 66, 063008 (2002). arXiv:astro-ph/0206155

    Article  ADS  Google Scholar 

  58. N. Kogo and E. Komatsu, “Angular trispectrum of CMB temperature anisotropy from primordial nonGaussianity with the full radiation transfer function,” Phys. Rev. D 73, 083007 (2006). arXiv:astro-ph/0602099

    Article  ADS  Google Scholar 

  59. D. H. Lyth, C. Ungarelli, and D. Wands, “The primordial density perturbation in the curvaton scenario,” Phys. Rev. D 67, 023503 (2003). arXiv:astro-ph/0208055

    Article  ADS  Google Scholar 

  60. N. Bartolo, S. Matarrese, and A. Riotto, “On nonGaussianity in the curvaton scenario,” Phys. Rev. D 69, 043503 (2004). arXiv:hep-ph/0309033

    Article  ADS  Google Scholar 

  61. D. H. Lyth and Y. Rodriguez, “The inflationary prediction for primordial non-Gaussianity,” Phys. Rev. Lett. 95, 121302 (2005). arXiv:astro-ph/0504045

    Article  ADS  Google Scholar 

  62. M. Sasaki, J. Valiviita, and D. Wands, “Non-Gaussianity of the primordial perturbation in the curvaton model,” Phys. Rev. D 74, 103003 (2006). arXiv:astro-ph/0607627

    Article  ADS  Google Scholar 

  63. M. Zaldarriaga, “Non-Gaussianities in models with a varying inflaton decay rate,” Phys. Rev. D 69, 043508 (2004). arXiv:astro-ph/0306006

    Article  ADS  Google Scholar 

  64. T. Suyama and M. Yamaguchi, “Non-Gaussianity in the modulated reheating scenario,” Phys. Rev. D 77, 023505 (2008). arXiv:0709.2545

    Article  ADS  Google Scholar 

  65. K. Ichikawa, T. Suyama, T. Takahashi, and M. Yamaguchi, “Primordial curvature fluctuation and its non-Gaussianity in models with modulated reheating,” Phys. Rev. D 78, 063545 (2008). arXiv:0807.3988

    Article  ADS  Google Scholar 

  66. N. Bartolo, M. Fasiello, S. Matarrese, and A. Riotto, “Large non-Gaussianities in the effective field theory approach to single-field inflation: the trispectrum,” J. Cosmol. Astropart. Phys. 1009, 035 (2010). arXiv:1006.5411

    Article  ADS  Google Scholar 

  67. D. Seery, J. E. Lidsey, and M. S. Sloth, “The inflationary trispectrum,” J. Cosmol. Astropart. Phys. 0701, 027 (2007). arXiv:astro-ph/0610210

    Article  ADS  Google Scholar 

  68. X. Chen, M. X. Huang, and G. Shiu, “The inflationary trispectrum for models with large non-Gaussianities,” Phys. Rev. D 74, 121301 (2006). arXiv:hep-th/0610235

    ADS  Google Scholar 

  69. D. Seery and J. E. Lidsey, “Non-Gaussianity from the inflationary trispectrum,” J. Cosmol. Astropart. Phys. 0701, 008 (2007). arXiv:astro-ph/0611034

    Article  ADS  Google Scholar 

  70. F. Arroja and K. Koyama, “Non-Gaussianity from the trispectrum in general single field inflation,” Phys. Rev. D 77, 083517 (2008). arXiv:0802.1167

    Article  ADS  Google Scholar 

  71. C. T. Byrnes, K. Y. Choi, and L. M. H. Hall, “Large non-Gaussianity from two-component hybrid inflation,” J. Cosmol. Astropart. Phys. 0902, 017 (2009). arXiv:0812.0807

    Article  ADS  Google Scholar 

  72. X. Gao, M. Li, and C. Lin, “Primordial non-Gaussianities from the trispectra in multiple field inflationary models,” J. Cosmol. Astropart. Phys. 0911, 007 (2009). arXiv:0906.1345

    Article  ADS  Google Scholar 

  73. D. Langlois and L. Sorbo, “Primordial perturbations and non-Gaussianities from modulated trapping,” J. Cosmol. Astropart. Phys. 0908, 014 (2009). arXiv:0906.1813

    Article  ADS  Google Scholar 

  74. K. Izumi, T. Kobayashi, and S. Mukohyama, “NonGaussianity from Lifshitz scalar,” J. Cosmol. Astropart. Phys. 1010, 031 (2010). arXiv:1008.1406

    Article  ADS  Google Scholar 

  75. X. Gao and C. Lin, “On the primordial trispectrum from exchanging scalar modes in general multiple field inflationary models,” J. osmol. Astropart. Phys. 1011, 035 (2010). arXiv:1009.1311

    Article  ADS  Google Scholar 

  76. L. Senatore and M. Zaldarriaga, “The effective field theory of multifield inflation,” J. High Energy Phys. 1204, 024 (2012). arXiv:1009.2093

    Article  ADS  Google Scholar 

  77. S. Mizuno and K. Koyama, “Trispectrum estimator in equilateral type non-Gaussian models,” J. Cosmol. Astropart. Phys. 1010, 002 (2010). arXiv:1007.1462

    Article  ADS  Google Scholar 

  78. P. Creminelli, G. D’Amico, M. Musso, J. Norena, E. Trincherini, “Galilean symmetry in the effective theory of inflation: new shapes of non-Gaussianity,” J. Cosmol. Astropart. Phys. 1102, 006 (2011). arXiv:1011.3004

    Article  ADS  Google Scholar 

  79. D. Seery, M. S. Sloth, and F. Vernizzi, “Inflationary trispectrum from graviton exchange,” J. Cosmol. Astropart. Phys. 0903, 018 (2009). arXiv:0811.3934

    ADS  Google Scholar 

  80. F. Arroja, S. Mizuno, K. Koyama, and T. Tanaka, “On the full trispectrum in single field DBI-inflation,” Phys. Rev. D 80, 043527 (2009). arXiv:0905.3641

    Article  ADS  Google Scholar 

  81. D. Gorbunov and V. Rubakov, Introduction to the Theory of the Early Universe: Hot Big Bang Theory (World Scientific, Hackensack, 2011).

    Book  Google Scholar 

  82. D. Gorbunov and V. Rubakov, Introduction to the Theory of the Early Universe: Cosmological Perturbations and Inflationary Theory (World Scientific, Hackensack, 2011).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mironov.

Additional information

Original Russian Text © S. Mironov, 2015, published in Fizika Elementarnykh Chastits i Atomnogo Yadra, 2015, Vol. 46, No. 6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mironov, S. Properties of perturbations in conformal cosmology. Phys. Part. Nuclei 46, 891–918 (2015). https://doi.org/10.1134/S1063779615060027

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779615060027

Keywords

Navigation