Skip to main content
Log in

Cooling of neutron stars and hybrid stars with a stiff hadronic EoS

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

Within the “nuclear medium cooling” scenario of neutron stars all reliably known temperature—age data, including those of the central compact objects in the supernova remnants of Cassiopeia A and XMMU-J1732, can be comfortably explained by a set of cooling curves obtained by variation of the star mass within the range of typical observed masses. The recent measurements of the masses of the pulsars PSR J1616-2230, PSR J0348-0432 and J00737-3039B and the companion of J1756-2251 provide independent proof for the existence of neutron stars with masses in a broad range from 1.2 to 2M The values M > 2M call for sufficiently stiff equations of state for neutron star matter. We investigate the response of the set of neutron star cooling curves to a stiffening of the nuclear equation of state so that maximum masses of about 2.4M would be accessible and to a deconfinement phase transition from such stiff nuclear matter in the outer core to color superconducting quark matter in the inner core. Without a readjustment of cooling inputs the mass range required to cover all cooling data for the stiff DD2 equation of state should include masses of 2.426M for describing the fast cooling of CasA while the existence of a quark matter core accelerates the cooling so that CasA cooling data are described with a hybrid star of mass 1.674M .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Tananbaum, “Cassiopeia A,” IAU Circ. 7246, 1 (1999)

    ADS  Google Scholar 

  2. J. P. Hughes, C. E. Rakowski, D. N. Burrows, and P. O. Slane, “Nucleosynthesis and mixing in Cassiopeia A,” Astrophys. J. 528, L109 (2000).

    Article  ADS  Google Scholar 

  3. W. B. Ashworth, Jr., “A probable Flamsteed observation of the Cassiopeia-A supernova,” J. Hist. Astron. 11, 1 (1980).

    Article  ADS  Google Scholar 

  4. W. C. G. Ho and C. O. Heinke, “A neutron star with a carbon atmosphere in the Cassiopeia A supernova remnant,” Nature 462, 71 (2009).

    Article  ADS  Google Scholar 

  5. C. O. Heinke and W. C. G. Ho, “Direct observation of the cooling of the Cassiopeia A neutron star,” Astrophys. J. 719, L167 (2010).

    Article  ADS  Google Scholar 

  6. K. G. Elshamouty, C. O. Heinke, G. R. Sivakoff, et al., “Measuring the cooling of the neutron star in Cassiopeia A with all Chandra X-ray observatory detectors,” Astrophys. J. 777, 22 (2013).

    Article  ADS  Google Scholar 

  7. D. G. Yakovlev, W. C. G. Ho, P. S. Shternin, et al., “Cooling rates of neutron stars and the young neutron star in the Cassiopeia A supernova remnant,” Mon. Not. R. Astron. Soc. 411, 1977 (2011).

    Article  ADS  Google Scholar 

  8. D. Klochkov, V. Suleimanov, G. Pühlhofer, et al., “The neutron star in HESSJ1731-347: central compact objects as laboratories to study the equation of state of superdense matter,” Astron. Astrophys. 573, A53 (2015).

    Article  ADS  Google Scholar 

  9. D. N. Voskresensky, “Neutrino cooling of neutron stars: Medium effects,” Lect. Notes Phys. 578, 467 (2001).

    Article  ADS  Google Scholar 

  10. D. N. Voskresensky and A. V. Senatorov, “Emission of neutrinos by neutron stars,” Sov. Phys. JETP 63, 885 (1986).

    Google Scholar 

  11. P. Demorest, T. Pennucci, S. Ransom, et al., “Shapiro delay measurement of a two solar mass neutron star,” Nature 467, 1081 (2014).

    Article  ADS  Google Scholar 

  12. J. Antoniadis, P. C. C. Freire, N. Wex, et al., “A massive pulsar in a compact relativistic binary,” Science 340, 6131 (2013).

    Article  ADS  Google Scholar 

  13. M. Kramer, I. H. Stairs, R. N. Manchester, et al., “Tests of general relativity from timing the double pulsar,” Science 314, 97 (2006).

    Article  ADS  Google Scholar 

  14. A. J. Faulkner, M. Kramer, A. G. Lyne, et al., “PSR J1756-2251: a new relativistic double neutron star system,” Astroph. J. 618, L119 (2004).

    Article  ADS  Google Scholar 

  15. G. Schaab, D. Voskresensky, A. D. Sedrakian, et al., “Impact of medium effects on the cooling of nonsuperfluid and superfluid neutron stars,” Astron. Astrophys. 321, 591 (1997).

    ADS  Google Scholar 

  16. D. Blaschke, H. Grigorian, and D. N. Voskresensky, “Cooling of neutron stars: Hadronic model,” Astron. Astrophys. 424, 979 (2004).

    Article  ADS  Google Scholar 

  17. D. Blaschke, H. Grigorian, D. N. Voskresensky, and F. Weber, “On the cooling of the neutron star in Cassiopeia A,” Phys. Rev., C 85, 022802 (2012).

    Article  ADS  Google Scholar 

  18. D. Blaschke, H. Grigorian, and D. N. Voskresensky, “Nuclear medium cooling scenario in the light of new Cas A cooling data and the 2M pulsar mass measurements,” Phys. Rev., C 88, 065805 (2013).

    Article  ADS  Google Scholar 

  19. D. N. Voskresensky and A. V. Senatorov, “Description of nuclear interaction in Keldysh’s diagram technique and neutrino luminosity of neutron stars,” Sov. J. Nucl. Phys. 45, 411 (1987).

    Google Scholar 

  20. E. E. Kolomeitsev and D. N. Voskresensky, “Neutrino emission due to Cooper-pair recombination in neutron stars revisited,” Phys. Rev., C 77, 065808 (2008).

    Article  ADS  Google Scholar 

  21. T. Klähn, D. Blaschke, S. Typel, et al., “Constraints on the high-density nuclear equation of state from the phenomenology of compact stars and heavy-ion collisions,” Phys. Rev., C 74, 035802 (2006).

    Article  ADS  Google Scholar 

  22. S. Bogdanov, “The nearest millisecond pulsar revisited with Newton: Improved mass-radius constraints for PSR J0437-4715,” Astrophys. J. 762, 96 (2013).

    Article  ADS  Google Scholar 

  23. M. Alford, D. Blaschke, A. Drago, et al., “Quark matter in compact stars?,” Nature 445, E7 (2007).

    Article  ADS  Google Scholar 

  24. T. Klähn, D. Blaschke, F. Sandin, et al., “Modern compact star observations and the quark matter equation of state,” Phys. Lett., B 654, 170 (2007).

    Article  ADS  Google Scholar 

  25. T. Klähn, R. Lastowiecki, and D. Blaschke, “Implications of the measurement of pulsars with two solar masses for quark matter in compact stars and HIC. A NJL model case study,” Phys. Rev., D 88, 085001 (2013).

    Article  ADS  Google Scholar 

  26. R. W. Romani, A. V. Filippenko, J. M. Silverman, et al., “PSR J1311-3430: A heavyweight neutron star with a flyweight helium companion,” Astrophys. J. Lett. 760, L36 (2012).

    Article  ADS  Google Scholar 

  27. S. Typel, G. Röpke, T. Klähn, et al., “Composition and thermodynamics of nuclear matter with light clusters,” Phys. Rev., C 81, 015803 (2010).

    Article  ADS  Google Scholar 

  28. H. Heiselberg and M. Hjorth-Jensen, “Phase transitions in neutron stars and maximum masses,” Astrophys. J. 525, L45 (1999).

    Article  ADS  Google Scholar 

  29. S. Typel and H. H. Wolter, “Relativistic mean field calculations with density dependent meson nucleon coupling,” Nucl. Phys., A 656, 331 (1999).

    Article  ADS  Google Scholar 

  30. P. Danielewicz and J. Lee, “Symmetry energy II: Isobaric analog states,” Nucl. Phys., A 922, 1 (2014).

    Article  ADS  Google Scholar 

  31. K. Hebeler, J. M. Lattimer, C. J. Pethick, and A. Schwenk, “Constraints on neutron star radii based on chiral effective field theory interactions,” Phys. Rev. Lett. 105, 161102 (2010).

    Article  ADS  Google Scholar 

  32. P. Danielewicz, R. Lacey, and W. G. Lynch, “Determination of the equation of state of dense matter,” Science 298, 1592 (2002).

    Article  ADS  Google Scholar 

  33. R. Lastowiecki, D. Blaschke, H. Grigorian, and S. Typel, “Strangeness in the cores of neutron stars,” Acta Phys. Polon. Supp. 5, 535 (2012).

    Article  Google Scholar 

  34. L. Bonanno and A. Sedrakian, “Composition and stability of hybrid stars with hyperons and quark color-superconductivity,” Astron. Astrophys. 539, A16 (2012).

    Article  ADS  Google Scholar 

  35. H. Grigorian, D. Blaschke, and D. Voskresensky, “Cooling of neutron stars with color superconducting quark cores,” Phys. Rev., C 71, 045801 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Grigorian.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigorian, H., Blaschke, D. & Voskresensky, D.N. Cooling of neutron stars and hybrid stars with a stiff hadronic EoS. Phys. Part. Nuclei 46, 849–853 (2015). https://doi.org/10.1134/S1063779615050111

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779615050111

Keywords

Navigation