Abstract
We review the methods of constructing confidence intervals that account for a priori information about one-sided constraints on the parameter being estimated. We show that the so-called method of sensitivity limit yields a correct solution of the problem. Derived are the solutions for the cases of a continuous distribution with non-negative estimated parameter and a discrete distribution, specifically a Poisson process with background. For both cases, the best upper limit is constructed that accounts for the a priori information. A table is provided with the confidence intervals for the parameter of Poisson distribution that correctly accounts for the information on the known value of the background along with the software for calculating the confidence intervals for any confidence levels and magnitudes of the background (the software is freely available for download via Internet).
Similar content being viewed by others
References
J. Neyman, “Outline of a theory of statistical estimation based on the classical theory of probability,” Phil. Trans. R. Soc. Lond. A 236, 333–380 (1937).
V. N. Aseev et al., Phys. Rev. D 84, 112003 (2011).
H.V. Klapdor-Kleingrothaus et al., Eur. Phys. J. A 12, 147 (2001); E. Andreotti et al., Astropart. Phys. 34, 822 (2011), arXiv:1012.3266; R. Arnold et al., Nucl. Phys. A 765, 483 (2006), arXiv:hep-ex/0601021; A. Barabash et al., Phys. Atom. Nucl. 74, 312 (2011), arXiv:1002.2862.
K. Abe et al., Phys. Rev. Lett. 107, 041801(2011), arXiv:1106.2822; P. Adamson et al., Phys. Rev. Lett. 107, 181802 (2011), arXiv:1108.0015.
T. E. Sterne, Biometrika 41, 275 (1954); E. L. Crow, Biometrika 43, 423 (1956), E. L. Crow and R. S. Gardner, Biometrika 46, 441 (1959).
G. J. Feldman and R. D. Cousins, Phys. Rev. D 57, 3873 (1998).
G. Cowan, K. Cranmer, E. Gross, and O. Vitells, Power-Constrained Limits, arXiv:1105.3166.
M. Mandelkern and J. Schultz, “The statistical analysis of Gaussian and Poisson signals near physical boundaries,” J. Math. Phys. 41, 5701–5709 (2000), arXiv:hep-ex/9910041v3.
F. Tkachov, Optimal Confidence Intervals for Bounded Parameters, arXiv:0911.4271
Ch. Kraus et al., Eur. Phys. J. C 40, 447 (2005).
V. M. Lobashev, Prog. Part. Nucl. Phys. 48, 123 (2002); Nucl. Phys. A 719,153 (2003); V. M. Lobashev et al., Nucl. Phys. B (Proc. Suppl.) 91, 280 (2001).
F. V. Tkachov, Optimal Upper Bounds for Non-Negative Parameters, arXiv:0912.1555
A. A. Tyapkin, On the interpretation of the basic problems of the estimation theory [Appendix to the Russian Translation of the Statistical Methods in Experimental Physics], Eds. by W.T. Eadie, D. Dryard, F.E. James, M. Roos, and B. Sadoulet (Atomizdat, Moscow, 1976).
A. L. Read, “Modified frequentist analysis of search results (the CLs method),” Proceedings of the Workshop on Confidence Limits, CERN, Switzerland, 17–18 January 2000, Eds. by F. James, L. Lyons, and Y. Perrin, 2000, p. 81.
“The ATLAS collaboration,” Phys. Lett. B 716, 1 (2012); “The CMS collaboration,” Phys. Lett. B 716, 30 (2012).
W. T. Eadie, D. Dryard, F. E. James, M. Roos, and B. Sadoulet, Statistical Methods in Experimental Physics (North-Holland, 1971).
F. V. Tkachov, Transcending the Least Squares, arXiv:physics/0604127.
C. Giunti, Phys. Rev. D 59, 053001 (1999).
R. D. Cousins, Negatively Biased Relevant Subsets Induced by the Most-Powerful One-Sided Upper Confidence Limits for a Bounded Physical Parameter, arXiv:1109.2023.
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © A.V. Lokhov, F.V. Tkachov, 2015, published in Fizika Elementarnykh Chastits i Atomnogo Yadra, 2015, Vol. 46, No. 3.
The article was translated by the authors.
Rights and permissions
About this article
Cite this article
Lokhov, A.V., Tkachov, F.V. Confidence intervals with a priori parameter bounds. Phys. Part. Nuclei 46, 347–365 (2015). https://doi.org/10.1134/S1063779615030089
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1063779615030089