Skip to main content
Log in

Confidence intervals with a priori parameter bounds

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

We review the methods of constructing confidence intervals that account for a priori information about one-sided constraints on the parameter being estimated. We show that the so-called method of sensitivity limit yields a correct solution of the problem. Derived are the solutions for the cases of a continuous distribution with non-negative estimated parameter and a discrete distribution, specifically a Poisson process with background. For both cases, the best upper limit is constructed that accounts for the a priori information. A table is provided with the confidence intervals for the parameter of Poisson distribution that correctly accounts for the information on the known value of the background along with the software for calculating the confidence intervals for any confidence levels and magnitudes of the background (the software is freely available for download via Internet).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Neyman, “Outline of a theory of statistical estimation based on the classical theory of probability,” Phil. Trans. R. Soc. Lond. A 236, 333–380 (1937).

    Article  ADS  Google Scholar 

  2. V. N. Aseev et al., Phys. Rev. D 84, 112003 (2011).

    Article  ADS  Google Scholar 

  3. H.V. Klapdor-Kleingrothaus et al., Eur. Phys. J. A 12, 147 (2001); E. Andreotti et al., Astropart. Phys. 34, 822 (2011), arXiv:1012.3266; R. Arnold et al., Nucl. Phys. A 765, 483 (2006), arXiv:hep-ex/0601021; A. Barabash et al., Phys. Atom. Nucl. 74, 312 (2011), arXiv:1002.2862.

    Article  ADS  Google Scholar 

  4. K. Abe et al., Phys. Rev. Lett. 107, 041801(2011), arXiv:1106.2822; P. Adamson et al., Phys. Rev. Lett. 107, 181802 (2011), arXiv:1108.0015.

    Article  ADS  Google Scholar 

  5. T. E. Sterne, Biometrika 41, 275 (1954); E. L. Crow, Biometrika 43, 423 (1956), E. L. Crow and R. S. Gardner, Biometrika 46, 441 (1959).

    MATH  MathSciNet  Google Scholar 

  6. G. J. Feldman and R. D. Cousins, Phys. Rev. D 57, 3873 (1998).

    Article  ADS  Google Scholar 

  7. G. Cowan, K. Cranmer, E. Gross, and O. Vitells, Power-Constrained Limits, arXiv:1105.3166.

  8. M. Mandelkern and J. Schultz, “The statistical analysis of Gaussian and Poisson signals near physical boundaries,” J. Math. Phys. 41, 5701–5709 (2000), arXiv:hep-ex/9910041v3.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. F. Tkachov, Optimal Confidence Intervals for Bounded Parameters, arXiv:0911.4271

  10. Ch. Kraus et al., Eur. Phys. J. C 40, 447 (2005).

    Article  ADS  Google Scholar 

  11. V. M. Lobashev, Prog. Part. Nucl. Phys. 48, 123 (2002); Nucl. Phys. A 719,153 (2003); V. M. Lobashev et al., Nucl. Phys. B (Proc. Suppl.) 91, 280 (2001).

    Article  ADS  Google Scholar 

  12. F. V. Tkachov, Optimal Upper Bounds for Non-Negative Parameters, arXiv:0912.1555

  13. A. A. Tyapkin, On the interpretation of the basic problems of the estimation theory [Appendix to the Russian Translation of the Statistical Methods in Experimental Physics], Eds. by W.T. Eadie, D. Dryard, F.E. James, M. Roos, and B. Sadoulet (Atomizdat, Moscow, 1976).

  14. A. L. Read, “Modified frequentist analysis of search results (the CLs method),” Proceedings of the Workshop on Confidence Limits, CERN, Switzerland, 17–18 January 2000, Eds. by F. James, L. Lyons, and Y. Perrin, 2000, p. 81.

    Google Scholar 

  15. “The ATLAS collaboration,” Phys. Lett. B 716, 1 (2012); “The CMS collaboration,” Phys. Lett. B 716, 30 (2012).

  16. W. T. Eadie, D. Dryard, F. E. James, M. Roos, and B. Sadoulet, Statistical Methods in Experimental Physics (North-Holland, 1971).

    MATH  Google Scholar 

  17. F. V. Tkachov, Transcending the Least Squares, arXiv:physics/0604127.

  18. C. Giunti, Phys. Rev. D 59, 053001 (1999).

    Article  ADS  Google Scholar 

  19. R. D. Cousins, Negatively Biased Relevant Subsets Induced by the Most-Powerful One-Sided Upper Confidence Limits for a Bounded Physical Parameter, arXiv:1109.2023.

  20. http://www.inr.ac.ru/~blackbox/stat/intervals/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Lokhov.

Additional information

Original Russian Text © A.V. Lokhov, F.V. Tkachov, 2015, published in Fizika Elementarnykh Chastits i Atomnogo Yadra, 2015, Vol. 46, No. 3.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lokhov, A.V., Tkachov, F.V. Confidence intervals with a priori parameter bounds. Phys. Part. Nuclei 46, 347–365 (2015). https://doi.org/10.1134/S1063779615030089

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779615030089

Keywords

Navigation