Skip to main content
Log in

Statistical simulation of multiple Compton backscattering process

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

A number of laboratories are currently developing monochromatic sources of X-rays and gamma quanta based on the Compton backscattering (CBS) of laser photons by relativistic electrons. Modern technologies are capable of providing a concentration of electrons and photons in the interaction point such that each primary electron can emit several hard photons. In contrast to the well-known nonlinear CBS process, in which an initial electron “absorbs” a few laser photons and emits a single hard one, the above-mentioned process can be called a multiple CBS process and is characterized by a mean number of emitted photons. The present paper is devoted to simulating the parameters of a beam of back scattered quanta based on the Monte Carlo technique. It is shown that, even in the case of strong collimation of a resulting photon beam, the radiation monochromaticity may deteriorate because of the contribution coming from the multiple photon emission, which is something that must be considered while designing new CBS sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. H. Milburn, “Electron scattering by an intense polarized photon field,” Phys. Rev. Lett. 10, 75 (1963).

    Article  ADS  Google Scholar 

  2. F. R. Arutyunian and V. A. Tumanian, “The Compton effect on relativistic electrons and the possibility of obtaining high energy beams,” Phys. Lett. 4, 176 (1963).

    Article  ADS  Google Scholar 

  3. I. Federici, G. Giordano, G. Matone, G. Pasquariello, P. G. Picozza, R. Caloi, L. Casano, M. P. Pascale, “Backward Compton scattering of laser light against high-energy electrons: the LADON photon beam at Frascati,” Nuovo Cimento B 59, 247 (1980).

    Article  ADS  Google Scholar 

  4. A. A. Kazakov, G. Ya. Kezerashvili, L. E. Lazareva, V. G. Nedorezov, A. N. Skrinskii, A. S. Sudov, G. M. Tumaikin, Yu. M. Shatunov, “Fission of 238U and 237Np by intermediate energy γ-rays,” JETP Lett. 40, 1271 (1984).

    ADS  Google Scholar 

  5. V. G. Nedorezov, Phys. Part. Nucl. 43, 637 (2012).

    Article  Google Scholar 

  6. F. Albert, S. G. Anderson, D. J. Gibson, C. A. Hagmann, M. S. Johnson, M. Messerly, V. Semenov, M. Y. Shverdin, B. Rusnak, A. M. Tremaine, F. V. Hartemann, C. W. Siders, D. P. McNabb, and C. P. J. Barty, “Characterization and applications of a tunable, laser-based, MeV-class Compton-scattering γ-ray source,” Phys. Rev. ST Accel. Beams 13, 070704 (2010).

    Article  ADS  Google Scholar 

  7. D. Laundy, G. Priebe, S. P. Jamison, D. M. Graham, P. J. Phillips, S. L. Smith, Y. Saveliev, S. Vassilev, E. A. Seddonet, “Results from the Daresbury Compton backscattering X-ray source,” Nucl. Instrum. Meth. A 689, 108 (2012).

    Article  ADS  Google Scholar 

  8. A. Bacci, F. Broggi, C. De Martinis, D. Gioveaet, C. Maroli, V. Petrilloa, A. R. Rossi, L. Serafini, P. Tomassini, L. Cultrera, G. Di Pirro, M. Ferrario, D. Filippetto, G. Gatti, E. Pace, C. Vaccarezza, et al., “Status of Thomson source at SPARC/PLASMONX,” Nucl. Instrum. Meth. A 608, S90 (2009).

    Article  Google Scholar 

  9. H. R. Weller, M. W. Ahmed, H. Gao, W. Torrow, U. K. Wu, M. Gai, R. Miskimen, “Research opportunities at the upgraded HIγS facility,” Prog. Part. Nucl. Phys. 62, 257 (2009).

    Article  ADS  Google Scholar 

  10. A. S. Chauchat, V. Le Flanchec, J. P. Nugre, A. Binet, P. Balleyguier, J. P. Brasile, J. M. Ortega, “Instrumentation developments for production and characterisation of inverse Compton scattering X-rays and first results with a 17 MeV electron beam,” Nucl. Instrum. Meth. A 622, 129 (2010).

    Article  ADS  Google Scholar 

  11. “High power laser energy research facility,” http://www.hiper-laser.org.

  12. D. H. Bilderback, J. D. Brock, D. S. Dale, K. D. Finkelstein, M. A. Pfeifer, and S. M. Gruneret, New J. of Phys. 12, 035011 (2010).

    Article  ADS  Google Scholar 

  13. F. W. Hartemann, W. J. Brown, D. J. Gibson, S. G. Anderson, A. M. Tremaine, P. T. Springer, A. J. Wootton, E. P. Hartouni, and C. P. J. Bartyet, “High-energy scaling of Compton scattering light sources,” Phys. Rev. ST Accel. Beams 8, 100702 (2005).

    Article  ADS  Google Scholar 

  14. J. Yang, M. Washio, A. Endo, and T. Hori, “Evaluation of femtosecond X-rays produced by Thomson scattering under linear and nonlinear interactions between a low-emittance electron beam and an intense polarized laser light,” Nucl. Instrum. Meth. A 428, 556 (1999).

    Article  ADS  Google Scholar 

  15. E. Bulyak and V. Skomorokhov, “Parameters of Compton X-ray beams: Total yield and pulse duration,” Phys. Rev. ST Accel. Beams 8, 030703 (2005).

    Article  ADS  Google Scholar 

  16. V. Telnov, “Principles of photon colliders,” Nucl. Instrum. Meth. A 355, 3 (1995).

    Article  ADS  Google Scholar 

  17. “The extreme light infrastructure European project,” http://www.extreme-light-infrastructure.en.

  18. Luca Serafini, “INFN proposal for ELI-NP Compton gamma-ray source,” http://www.eli-np.ro/2011-18-19aug/gamma-beam-meeting-august-presentation.php.

  19. A. D. Debus, S. Bock, M. Bussmann, T. E. Cowan, A. Jochmann, T. Kluge, S. D. Kraft, R. Sauerbrey, K. Zeil, U. Schrammet, “Linear and non-linear Thomson-scattering X-ray sources driven by conventionally and laser plasma accelerated electrons,” Proc. of SPIE 7359, 735908–1 (2009).

    Article  ADS  Google Scholar 

  20. A. Kolchuzhkin, A. Potylitsyn, S. Strokov, and V. Ababiy, “Stochastics of multiple electron-photon head-on collisions,” Nucl. Instrum. Meth. B 201, 307 (2003).

    Article  ADS  Google Scholar 

  21. A. Potylitsyn and A. Kolchuzhkin, “Comment on quantum effects in spontaneous emission by a relativistic, undulating electron,” Eur. Phys. L. 100, 24006 (2012).

    Article  ADS  Google Scholar 

  22. K. Yokoya, “CAIN 2.23” http://www-acc-theory.kek.jp/numbers/cain/default.html.

  23. C. Sun and Y. K. Wu, “Theoretical and simulation studies of characteristics of a Compton light source,” Phys. Rev. ST Accel. Beams 14, 044701 (2011).

    Article  ADS  Google Scholar 

  24. W. J. Brown and F. V. Hartemann, “Experimental characterization of an ultrafast Thomson scattering X-ray source with three-dimensional time and frequency-domain analysis,” Phys. Rev. ST Accel. Beams 7, 060703 (2004).

    Article  ADS  Google Scholar 

  25. D. Yu. Ivanov, G. L. Kotkin, and V. G. Serbo, “Complete description of polarization effects in emission of a photon by an electron in the field of a strong laser wave,” Eur. Phys. J. C 36, 127 (2004).

    Article  ADS  Google Scholar 

  26. E. S. Sarachik and G. T. Schappert, “Classical theory of the scattering of intense laser radiation by free electrons,” Phys. Rev. D 1, 2738 (1970).

    Article  ADS  Google Scholar 

  27. A. I. Nikishov and V. I. Ritus, “Quantum processes in the field of a plane electromagnetic wave and in a constant field,” Sov. Phys. JETP 19, 529 (1964).

    MathSciNet  Google Scholar 

  28. E. Esarey, S. K. Ride, P. Sprangle, “Nonlinear Thomson scattering of intense laser pulses from beams and plasmas,” Phys. Rev. E 48, 3003 (1993).

    Article  ADS  Google Scholar 

  29. J. D. Jackson, “Classical Electrodynamics,” (Wiley, New York, 1998).

    Google Scholar 

  30. A. Potylitsyn and A. Kol’chuzhkin, “Characteristics of final particles in multiple Compton backscattering process,” Nucl. Instrum. Meth. B 309, 15 (2013).

    Article  ADS  Google Scholar 

  31. U. Fano, L. Spenser, M. Berger, Gamma Radiation Transfer (Gosatomizdat, Moscow, 1963) [in Russian].

    Google Scholar 

  32. T. Omori, T. Aoki, K. Dobashi, T. Hirose, Y. Kurihara, T. Okugi, I. Sakai, A. Tsunemi, J. Urakawa, M. Washio, K. Yokoya, “Design of a polarized positron source for linear colliders,” Nucl. Instrum. Meth. A 500, 232 (2003).

    Article  ADS  Google Scholar 

  33. S. A. Bogacz, J. Ellis, L. Lusito, D. Schulte, T. Takahashi, M. Velasco, M. Zanetti, and F. Zimmermann, “SAPPHiRE: a small gamma-gamma Higgs factory,” http://arXiv.org/abs/arXiv:1208.2827.

  34. I. E. Ginzburg and G. L. Kotkin, “Effective photon spectra for the photon colliders,” Eur. Phys. J. C 13, 295 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Potylitsyn.

Additional information

Original Russian Text © A.P. Potylitsyn, A.M. Kolchuzhkin, 2014, published in Fizika Elementarnykh Chastits i Atomnogo Yadra, 2014, Vol. 45, No. 5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potylitsyn, A.P., Kolchuzhkin, A.M. Statistical simulation of multiple Compton backscattering process. Phys. Part. Nuclei 45, 1000–1012 (2014). https://doi.org/10.1134/S1063779614050062

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779614050062

Keywords

Navigation