Skip to main content
Log in

The ZFITTER project

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The ZFITTER project is aimed at the computation of high-precision theoretical predictions for various observables in high-energy electron-positron annihilation and other processes. The stages of the project development are described. Accent is made on applications to the analysis of LEP data. The present status of the project and perspectives are given as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Akhundov, D. Bardin, and T. Riemann, “Hunting the hidden standard Higgs,” Phys. Lett. B 166, 111 (1986).

    ADS  Google Scholar 

  2. S. Glashow, “Partial symmetries of weak interactions,” Nucl. Phys. 22, 579 (1961).

    Google Scholar 

  3. S. Weinberg, “A model of leptons,” Phys. Rev. Lett. 19, 1264 (1967).

    ADS  Google Scholar 

  4. A. Salam, Proc. of the Eighth Nobel Symp., Ed. by N. Svartholm (Wiley-Intersci., N. Y., 1968).

  5. G. ’t Hooft and M. Veltman, “Regularization and renormalization of gauge fields,” Nucl. Phys. B 44, 189 (1972).

    ADS  Google Scholar 

  6. C. Wohl, et al. (Particle Data Group Collab.), “Review of particle properties,” Rev. Mod. Phys. 56, S1 (1984).

    ADS  Google Scholar 

  7. LEP Electroweak Working Group (LEPEWWG) http://lepewwg.web.cern.ch/LEPEWWG/.

  8. J. Beringer, et al. (Particle Data Group Collab.), “Review of Particle Physics (RPP),” Phys. Rev. D 86, 010001 (2012).

    ADS  Google Scholar 

  9. D. Bardin, et al., “A realistic approach to the standard Z peak,” Z. Phys. C 44, 493 (1989).

    Google Scholar 

  10. D. Y. Bardin, et al., “DIZET: A program package for the calculation of electroweak one loop corrections for the process e + e f + f around the Z 0 peak,” Comput. Phys. Commun. 59, 303 (1990).

    ADS  Google Scholar 

  11. D. Bardin, et al., “ZFITTER: An analytical program for fermion pair production in e + e annihilation,” Preprint CERN/TH.6443, 1992, arXiv:hep-ph/9412201.

    Google Scholar 

  12. D. Bardin, et al., “ZFITTER v.6.21: A semi-analytical program for fermion pair production in e + e annihilation,” Comput. Phys. Commun. 133, 229 (2001).

    ADS  MATH  Google Scholar 

  13. A. Arbuzov, et al., “ZFITTER: A Semi-analytical program for fermion pair production in e + e annihilation, from version 6.21 to version 6.42,” Comput. Phys. Commun. 174, 728 (2006).

    ADS  Google Scholar 

  14. G. Montagna, et al., “TOPAZ0: A Program for computing observables and for fitting cross-sections and forward—backward asymmetries around the Z 0 peak,” Comput. Phys. Commun. 76, 328 (1993).

    ADS  Google Scholar 

  15. G. Montagna, et al., “TOPAZ0 2.0: A Program for computing deconvoluted and realistic observables around the Z 0 peak,” Comput. Phys. Commun. 93, 120 (1996).

    ADS  Google Scholar 

  16. G. Montagna, et al., “TOPAZ0 4.0: A new version of a computer program for evaluation of deconvoluted and realistic observables at LEP-1 and LEP-2,” Comput. Phys. Commun. 117, 278 (1999).

    ADS  Google Scholar 

  17. M. Kobayashi and T. Maskawa, “CP violation in the renormalizable theory of weak interaction,” Prog. Theor. Phys. 49, 652 (1973).

    ADS  Google Scholar 

  18. F. Abe, et al. (CDF Collab.), “Observation of top quark production in \(\bar pp\) collisions,” Phys. Rev. Lett. 74, 2626 (1995).

    ADS  Google Scholar 

  19. S. Abachi, et al. (D 0 Collab.), “Observation of the top quark,” Phys. Rev. Lett. 74, 2632 (1995).

    ADS  Google Scholar 

  20. G. Aad, et al. (ATLAS Collab.), “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC,” Phys. Lett. B 716, 1 (2012).

    ADS  Google Scholar 

  21. S. Chatrchyan, et al. (CMS Collab.), “Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC,” Phys. Lett. B 716, 30 (2012).

    ADS  Google Scholar 

  22. F. Englert and R. Brout, “Broken symmetry and the mass of gauge vector mesons,” Phys. Rev. Lett. 13, 321 (1964).

    ADS  MathSciNet  Google Scholar 

  23. P. W. Higgs, “Broken symmetries and the masses of gauge bosons,” Phys. Rev. Lett. 13, 508 (1964).

    ADS  MathSciNet  Google Scholar 

  24. P. W. Higgs, “Broken symmetries, massless particles and gauge fields,” Phys. Lett. 12, 132 (1964).

    ADS  Google Scholar 

  25. Press release from Royal Swedish Academy of Sciences, 8 October 2013, available from http://www.nobelprize.org/nobel_prizes/physics/laureates/2013/press.pdf.

  26. The Class for Physics of the Royal Swedish Academy of Sciences. Scientific Background on the Nobel Prize in Physics 2013: The BEH-Mechanism, Interactions with Short Range Forces and Scalar Particles. Available from http://www.nobelprize.org/nobel_prizes/physics/laureates/2013/advanced-physicsprize2013.pdf.

  27. J. Mnich, “Experimental tests of the standard model in e + e \(f\bar f\) at the Z resonance,” Phys. Rept. 271, 181 (1996).

    ADS  Google Scholar 

  28. O. Eberhardt, “Extra doublets—Global analyses of Standard Model extensions in the fermionic or scalar sector,” PhD Thesis (KIT, Karlsruhe, 2013), arXiv:1309.1278.

    Google Scholar 

  29. S. Schael, et al., (ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavour Group Collab.), “Precision electroweak measurements on the Z resonance,” Phys. Rept. 427, 257 (2006).

    Google Scholar 

  30. S. Schael, et al., (ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavour Group Collab.), “Electroweak measurements in electron-positron collisions at W-boson-pair energies at LEP,” Phys. Rept. 532, 119 (2013).

    Google Scholar 

  31. D. Y. Bardin, “Twelve years of precision calculations for LEP. What’s next?,” J. Phys. G 29, 75 (2003).

    ADS  Google Scholar 

  32. D. Y. Bardin, L. Kalinovskaya, G. Nanava, “An electroweak library for the calculation of EWRC to e + e \(f\bar f\) within the topfit project,” arXiv:hep-ph/0012080.

  33. J. Fleischer, et al., “Complete electroweak one loop radiative corrections to top pair production at TESLA: A Comparison,” arXiv:hep-ph/0202109.

  34. J. Fleischer, et al., “Electroweak one loop corrections for e + e annihilation into \(t\bar t\) including hard bremsstrahlung,” Eur. Phys. J. C 31, 37 (2003).

    ADS  Google Scholar 

  35. W. Beenakker, “Electroweak corrections: Techniques and applications,” PhD Thesis (Univ. Leiden, 1989).

    Google Scholar 

  36. D. Bardin and O. Fedorenko, “On high order effects for fermion elastic scattering processes in Weinberg-Salam theory. 1. Renormalization scheme,” Dubna preprint JINR-P2-11413, 1978.

    Google Scholar 

  37. D. Bardin and O. Fedorenko, “On high order effects for fermion elastic scattering processes in Weinberg-Salam theory. 2. Calculation of one loop diagrams,” Dubna preprint JINR-P2-11414, 1978.

    Google Scholar 

  38. D. Bardin and O. Fedorenko, “The one-loop approximation for the amplitude of the process νl q 1lq 2 in the Weinberg-Salam theory,” Dubna preprint JINR-P2-11461, 1978, [in Russian].

    Google Scholar 

  39. D. Bardin, P. Khristova, and O. Fedorenko, “On the lowest order electroweak corrections to spin 1/2 fermion scattering. 1. The one loop diagrammar,” Nucl. Phys. B 175, 435 (1980).

    ADS  Google Scholar 

  40. D. Y. Bardin, P. K. Khristova, and O. Fedorenko, “On the lowest order electroweak corrections to spin 1/2 fermion scattering. 2. The one loop amplitudes,” Nucl. Phys. B 197, 1 (1982).

    ADS  Google Scholar 

  41. D. Bardin, O. Fedorenko, and P. Khristova, “One loop effects in Weinberg-Salam theory,” Yad. Fiz. 35, 1220 (1982), [in Russian].

    Google Scholar 

  42. D. Bardin and P. Khristova, “Electroweak one loop corrections to amplitudes of fermion annihilation into a neutral vector boson pair,” Dubna preprint JINR-P2-82-836, 1982.

    Google Scholar 

  43. D. Bardin, O. Fedorenko, and P. Khristova, “On the lowest order electroweak corrections to fermion—boson scattering. Selfenergy and vertex diagrams,” Dubna preprint JINR-P2-82-840, 1982.

    Google Scholar 

  44. A. Akhundov, D. Bardin, and T. Riemann, “Electroweak one loop corrections to the decay of the neutral vector boson,” Nucl. Phys. B 276, 1 (1986).

    ADS  Google Scholar 

  45. D. Bardin, S. Riemann, and T. Riemann, “Electroweak one loop corrections to the decay of the charged vector boson,” Z. Phys. C 32, 121 (1986).

    ADS  Google Scholar 

  46. P. K. Khristova, “The one loop effects in the electroweak Glashow-Weinberg-Salam theory,” Acta Phys. Polon. B 18, 3 (1987).

    Google Scholar 

  47. H. Czyz, et al., “Is the anapole moment a physical observable?,” Can. J. Phys. 66, 132 (1988).

    ADS  Google Scholar 

  48. G. Mann and T. Riemann, “On mass shell renormalization of the Weinberg-Salam theory: An introductory lecture,” Zeuthen preprint PHE 83-09, 1983.

    Google Scholar 

  49. G. Mann and T. Riemann, “Particle mixing and renormalization in the Weinberg-Salam theory,” Talk at “Symposium Ahrenshoop 1981 on Special Topics In Gauge Field Theories,” Zeuthen preprint PHE 81-07, 1981, p. 88.

    Google Scholar 

  50. G. Mann and T. Riemann, “Muon number nonconserving decay of a heavy neutral gauge boson,” Zeuthen preprint PHE 82-5, 1982.

    Google Scholar 

  51. G. Mann and T. Riemann, “Nondiagonal Z decay: Zeμ,” Proc. of “Neutrino “82” (Balatonfuered, Hungary, 1982), vol. 2, p. 58.

    Google Scholar 

  52. G. Mann and T. Riemann, “Effective flavor changing weak neutral current in the standard theory and Z boson decay,” Annalen Phys., 1984, vol. 40, p. 334.

    Google Scholar 

  53. J. I. Illana and T. Riemann, “Charged lepton flavour violation from massive neutrinos in Z decays,” Phys. Rev. D 63, 053004 (2001).

    ADS  Google Scholar 

  54. J. I. Illana and M. Masip, “Lepton flavor violation in Z and lepton decays in supersymmetric models,” Phys. Rev. D 67, 035004 (2003).

    ADS  Google Scholar 

  55. A. Sirlin and A. Ferroglia, “Radiative corrections in precision electroweak physics: a historical perspective,” Rev. Mod. Phys. 85, 263 (2013).

    ADS  Google Scholar 

  56. D. Bardin, et al., “Electroweak radiative corrections to deep inelastic scattering at HERA. Neutral current scattering,” Z. Phys. C 42, 679 (1989).

    Google Scholar 

  57. A. Arbuzov, et al., “Hector 1.00: A Program for the calculation of QED, QCD and electroweak corrections to e p and lepton+− N deep inelastic neutral and charged current scattering,” Comput. Phys. Commun. 94, 128 (1996).

    ADS  Google Scholar 

  58. D. Bardin, et al., “ZFITTER v.6.21: A semi-analytical program for fermion pair production in e + e annihilation,” Comput. Phys. Commun. 133, 229 (2001).

    ADS  MATH  Google Scholar 

  59. D. Y. Bardin and O. Fedorenko, “Evaluation of systematic uncertainties caused by radiative corrections in experiments on deep inelastic lepton neutrino n scattering,” Sov. J. Nucl. Phys. 30, 418 (1979).

    Google Scholar 

  60. D. Y. Bardin, O. Fedorenko, N. Shumeiko, “On the radiative corrections to p odd asymmetry in deep inelastic scattering of polarized leptons on nucleons,” Sov. J. Nucl. Phys. 32, 403 (1980).

    Google Scholar 

  61. D. Bardin, et al., “Energy dependent width effects in e + e annihilation near the Z boson pole,” Phys. Lett. B 206, 539 (1988).

    ADS  Google Scholar 

  62. S. Riemann, “A comparison of programs used in L3 for the analysis of Bhabha scattering,” Zeuthen Preprint. PHE-91-04, 1991.

    Google Scholar 

  63. D. Bardin, W. Hollik, and T. Riemann, “Bhabha scattering with higher order weak loop corrections,” Z. Phys. C 49, 485 (1991).

    Google Scholar 

  64. J. Field and T. Riemann, “BHAGENE3: A Monte Carlo event generator for lepton pair production and wide angle Bhabha scattering in e + e collisions near the Z peak,” Comput. Phys. Commun. 94, 53 (1996).

    ADS  Google Scholar 

  65. D. Bardin, et al., “Electroweak radiative corrections to deep inelastic scattering at HERA. Charged current scattering,” Z. Phys. C 44, 149 (1989).

    Google Scholar 

  66. D. Bardin, et al., “Predictions for \(\bar \nu \)νγ production at LEP,” Eur. Phys. J. C 24, 373 (2002).

    Google Scholar 

  67. D. Y. Bardin, et al., “Atomic parity violation and precision physics,” Eur. Phys. J. C 22, 99 (2001).

    ADS  Google Scholar 

  68. A. Leike, S. Riemann, and T. Riemann, “ZZ′ mixing in presence of standard weak loop corrections,” arXiv:hep-ph/9808374. ν

  69. T. Aaltonen, et al. (CDF Collab.), “Indirect measurement of 2θ W (MW) using e + e pairs in the Z-boson region with \(p\bar p\) collisions at a center-of-momentum energy of 1.96 TeV,” Phys. Rev. D 88, 072002 (2013).

    ADS  Google Scholar 

  70. W. Wetzel, “Electroweak radiative corrections for e + e → μ+μ at LEP energies,” Nucl. Phys. B 227, 1 (1983).

    ADS  Google Scholar 

  71. B. Lynn and R. Stuart, “Standard model electroweak radiative corrections to longitudinal polarization asymmetry A Pol and forward-backward asymmetry A FB in e + e → μ+μ on and off the Z 0 resonance,” Nucl. Phys. B 253, 216 (1985).

    ADS  Google Scholar 

  72. F. A. Berends, R. Kleiss, and S. Jadach, “Radiative corrections to muon pair and quark pair production in electron-positron collisions in the Z 0 region,” Nucl. Phys. B 202, 63 (1982).

    ADS  Google Scholar 

  73. D. Bardin and N. Shumeiko, “An exact calculation of the lowest order electromagnetic correction to the elastic scattering,” Nucl. Phys. B 127, 242 (1977).

    ADS  Google Scholar 

  74. A. A. Akhundov, et al., “Model independent QED corrections to the process epeX,” Fortsch. Phys. 44, 373 (1996).

    ADS  Google Scholar 

  75. A. Akhundov, et al., “Some integrals for exact calculation of QED bremsstrahlung,” Dubna preprint JINR-E2-84-777, 1984.

    Google Scholar 

  76. A. Akhundov, et al., “Exact calculations of the lowest order electromagnetic corrections for the processes e + e → μ+μ+τ),” Sov. J. Nucl. Phys. 42, 762 (1985).

    Google Scholar 

  77. O. Fedorenko and T. Riemann, “Analytic bremsstrahlung integration for the process e + e → μ+μγ in QED,” Acta Phys. Polon. B 18, 761 (1987).

    Google Scholar 

  78. D. Bardin, et al., “Electroweak working group report,” 1995, arXiv:hep-ph/9709229.

    Google Scholar 

  79. K. Chetyrkin, J. H. Kühn, and A. Kwiatkowski, “QCD corrections to the e + e cross-section and the Z boson decay rate: concepts and results,” Phys. Rept. 277, 189 (1996).

    ADS  Google Scholar 

  80. D. Bardin, M. Grünewald, and G. Passarino, “Precision calculation project report,” arXiv:hep-ph/9902452.

  81. D. Y. Bardin and G. Passarino, The Standard Model in the Making: Precision Study of the Electroweak Interactions (Oxford Univ. Press, 1999).

    Google Scholar 

  82. W. Beenakker, F. A. Berends, and W. van Neerven, “Applications of renormalization group methods to radiative corrections,” Proc. of Workshop on Electroweak Radiative Corrections, 3–7 April 1989, Ringberg, Germany, Ed. by J. H. Kühn, Radiative Corrections for e + e Collisions (Springer-Verlag, Berlin, 1989), p. 3.

    Google Scholar 

  83. F. A. Berends and R. Kleiss, “Distributions in the process e + e → μ+μ(γ),” Nucl. Phys. B 177, 237 (1981).

    ADS  Google Scholar 

  84. S. Jadach, J. H. Kühn, and Z. Was, “TAUOLA: A Library of Monte Carlo programs to simulate decays of polarized tau leptons,” Comput. Phys. Commun. 64, 275 (1990).

    ADS  Google Scholar 

  85. S. Jadach, B. Ward, and Z. Was, “The Monte Carlo program KORALZ, version 3.8, for the lepton or quark pair production at LEP/SLC energies,” Comput. Phys. Commun. 66, 276 (1991).

    ADS  MATH  Google Scholar 

  86. G. Montagna, F. Piccinini, and O. Nicrosini, “Structure function formulation of e + e \(f\bar f\) around the Z 0 resonance in realistic setup,” Phys. Rev. D 48, 1021 (1993).

    ADS  Google Scholar 

  87. S. Jadach, B. Ward, and Z. Was, “The precision Monte Carlo event generator KK for two-fermion final states in e + e collisions,” Comput. Phys. Commun. 130, 260 (2000).

    ADS  MATH  Google Scholar 

  88. Z physics at LEP1: Event generators and software,” Eds. by G. Altarelli, R. Kleiss, and C. Verzegnassi, CERN Yellow Report. CERN-89-08, 1989, vol. 3.

  89. T. Riemann, M. Sachwitz, and D. Bardin, “The Z boson line shape at LEP,” Proc. of XI Warsaw Symposium on Elementary Particle Physics: New Theories in Physics, 23–27 May 1988, Kazimierz, Poland, Eds. Z. Ajduk, S. Pokorski, A. Trautman, and N. J. Teaneck, World Scientific, 1988, pp. 238–246.

    Google Scholar 

  90. M. Consoli, W. Hollik, and F. Jegerlehner, “The effect of the top quark on the M(W)-M(Z) interdependence and possible decoupling of heavy fermions from low energy physics,” Phys. Lett. B 227, 167 (1989).

    ADS  Google Scholar 

  91. F. A. Berends, R. Kleiss, S. Jadach, “Monte Carlo simulation of radiative corrections to the processes e + e → μ+μ and e + e \(\bar qq\) in the Z 0 region,” Comput. Phys. Commun. 29, 185 (1983).

    ADS  Google Scholar 

  92. D. Bardin, O. Fedorenko, and T. Riemann, “The electromagnetic α3 contributions to e + e annihilation into fermions in the electroweak theory. Total cross-section σt and integrated asymmetry A FB,” Dubna preprint JINR-E2-87-663, 1987.

    Google Scholar 

  93. D. Bardin, et al., “The electromagnetic α3 contributions to e + e annihilation into fermions in the electroweak theory. Total cross-section σt and integrated asymmetry A FB,” Dubna preprint JINR-E2-88-324, 1988.

    Google Scholar 

  94. A. Leike, T. Riemann, and M. Sachwitz, “QED corrected extra Z boson effects at e + e colliders,” Phys. Lett. B 241, 267 (1990).

    ADS  Google Scholar 

  95. A. Leike and T. Riemann, “QED corrections to the forward backward asymmetry with extra Z bosons for e + e f + f ,” Z. Phys. C 51, 113 (1991).

    Google Scholar 

  96. A. Djouadi, et al., “Signals of new gauge bosons at future e + e colliders,” Z. Phys. C 56, 289 (1992).

    ADS  Google Scholar 

  97. O. Adriani, et al. (L3 Collab.), “Search for a Z′ at the Z resonance,” Phys. Lett. B 306, 187 (1993).

    ADS  Google Scholar 

  98. S. Riemann, “Suche nach einem Z′-Boson auf der Z-Resonanz mit dem L3-Detektor am LEP-Beschleuniger,” Dissertation (Technische Hochschule Aachen, 1994); Internal Report: DESY-Zeuthen 94-01, September 1994.

    Google Scholar 

  99. D. Bardin, et al., “The convolution integral for the forward-backward asymmetry in e + e annihilation,” Phys. Lett. B 229, 405 (1989).

    ADS  Google Scholar 

  100. D. Bardin, et al., “Analytic approach to the complete set of QED corrections to fermion pair production in e + e annihilation,” Nucl. Phys. B 351, 1 (1991).

    ADS  Google Scholar 

  101. D. Bardin, et al., “QED corrections with partial angular integration to fermion pair production in e + e annihilation,” Phys. Lett. B 255, 290 (1991).

    ADS  Google Scholar 

  102. M. Bilenky and A. Sazonov, “QED corrections at Z 0 pole with realistic kinematical cuts,” Dubna preprint JINR-E2-89-792, 1989.

    Google Scholar 

  103. G. Passarino, “Hard bremsstrahlung corrections for the process e + e → μ+μ,” Nucl. Phys. B 204, 237 (1982).

    ADS  Google Scholar 

  104. P. Christova, et al., “Predictions of ZFITTER v.6 for fermion pair production with acollinearity cut,” arXiv:hep-ph/9908289.

  105. P. Christova, et al., “Radiative corrections to e + e \(\bar ff\),” arXiv:hep-ph/0002054.

  106. P. Christova, et al., “Predictions for fermion pair production at LEP,” arXiv:hep-ph/9812412.

  107. M. A. Jack, “Semianalytical calculation of QED radiative corrections to e + e \(\bar ff\) with special emphasis on kinematical cuts to the final state,” arXiv:hep-ph/0009068.

  108. P. Christova, M. Jack, and T. Riemann, “Hard photon emission in e + e \(\bar ff\) with realistic cuts,” Phys. Lett. B 456, 264 (1999).

    ADS  Google Scholar 

  109. H. Strubbe, “Manual for Schoonschip: A CDC 6000/7000 program for symbolic evaluation of algebraic expressions,” Comput. Phys. Commun. 8, 1 (1974).

    ADS  Google Scholar 

  110. M. J. Veltman and D. N. Williams, Schoonschip’91, arXiv:hep-ph/9306228.

  111. R. N. Fedorova, et al., “Computer algebra in physical research of JINR,” Lecture Notes in Computer Science 378, 1 (1989).

    Google Scholar 

  112. J. Vermaseren, “Symbolic manipulation with FORM,” Version 2. Computer Algebra (Nederland, Amsterdam, 1991).

    Google Scholar 

  113. J. Vermaseren, “New features of FORM,” arXiv:math-ph/0010025.

  114. F. A. Berends, et al., “The standard Z peak,” Phys. Lett. B 203, 177 (1988).

    ADS  Google Scholar 

  115. A. Leike, T. Riemann, and J. Rose, “S matrix approach to the Z line shape,” Phys. Lett. B 273, 513 (1991).

    ADS  Google Scholar 

  116. T. Riemann, “Cross-section asymmetries around the Z peak,” Phys. Lett. B 293, 451 (1992).

    ADS  Google Scholar 

  117. S. Kirsch and S. Riemann, A Combined Fit to the L3 Data Using the S-Matrix Approach (First Resultats), L3 note, No. 1233, 1992.

    Google Scholar 

  118. S. Kirsch and S. Riemann, L3 Results of Model-Independent Analyses, L3 note, No. 1656, 1994.

    Google Scholar 

  119. O. Adriani, et al. (L3 Collab.), “An S matrix analysis of the Z resonance,” Phys. Lett. B 315, 494 (1993).

    ADS  Google Scholar 

  120. S. Kirsch and T. Riemann, “SMATASY: A program for the model independent description of the Z resonance,” Comput. Phys. Commun. 88, 89 (1995).

    ADS  Google Scholar 

  121. M. Awramik, M. Czakon, and A. Freitas, “Electroweak two-loop corrections to the effective weak mixing angle,” JHEP 0611, 048 (2006).

    ADS  Google Scholar 

  122. A. Akhundov, D. Y. Bardin, and A. Leike, “QED radiative corrections to massive fermion production in e + e annihilation,” Phys. Lett. B 261, 321 (1991).

    ADS  Google Scholar 

  123. A. Arbuzov, D. Y. Bardin, and A. Leike, “Analytic final state corrections with cut for e + e → massive fermions,” Mod. Phys. Lett. A 7, 2029 (1992); “Erratum,” Ibid. 9, 1515 (1994).

    ADS  Google Scholar 

  124. M. Jack, et al., “Predictions for fermion pair production at e + e colliders,” Nucl. Phys. Proc. Suppl. 89, 15 (2000).

    ADS  Google Scholar 

  125. A. Arbuzov, “Higher order pair corrections to electron positron annihilation,” JHEP 0107, 043 (2001).

    ADS  Google Scholar 

  126. A. Arbuzov, “Nonsinglet splitting functions in QED,” Phys. Lett. B 470, 252 (1999).

    ADS  Google Scholar 

  127. F. Boudjema, et al., “Standard model processes,” CERN Yellow Report “Physics at LEP 2” 1, 207.

  128. A. B. Arbuzov, et al., “Structure function approach in QED for high energy processes,” Phys. Part. Nucl. 41, 394 (2010).

    Google Scholar 

  129. A. B. Arbuzov, et al., “Radiative corrections to the Bhabha scattering,” Phys. Part. Nucl. 41, 636 (2010).

    Google Scholar 

  130. D. Y. Bardin and G. Passarino, “Upgrading of precision calculations for electroweak observables,” arXiv:hep-ph/9803425.

  131. M. Kobel, Z. Was, et al. (Two Fermion Working Group Collab.), “Two-fermion production in electron positron collisions,” arXiv:hep-ph/0007180.

  132. T. Riemann, et al., “On the derivation of standard model parameters from the Z peak,” Proc. of Workshop on Electroweak Radiative Corrections, 3–7 April 1989, Ringberg, Germany, Ed. by J. H. Kuhn, Radiative Corrections for e + e Collisions (Springer-Verlag, Berlin, 1989), p. 349.

    Google Scholar 

  133. D. Bardin and T. Riemann, “Electroweak radiative corrections at the Z peak,” Proc. of Workshop on Radiative Corrections: Results And Perspectives (RADCOR1989), 9–14 July 1989, Brighton, England, Eds. N. Dombey and F. Boudjema (Plenum Press, N.Y., 1990), NATO Advanced Study Institute, Series B: Physics 233, 169.

    Google Scholar 

  134. M. Böhm, et al., “Report on working group A: Renormalization schemes for electroweak radiative corrections,” Proc. of Workshop on Radiative Corrections: Results and Perspectives (RADCOR1989), 9–14 July 1989, Brighton, England, Eds. N. Dombey and F. Boudjema (Plenum Press, N.Y., 1990), NATO Advanced Study Institute, Series B: Physics 233, 233.

    Google Scholar 

  135. M. Böhm, et al., “Forward-backward asymmetries,” in CERN Yellow Report 89-08, preprint CERN/TH-5536, 1989.

    Google Scholar 

  136. R. Leiste, T. Riemann, M. Sachwitz, et al., “Precise measurement of M Z and ΓZ from the Z peak: A contribution to the running strategy of LEP 1,” Zeuthen preprint PHE-89-02, 1989.

    Google Scholar 

  137. D. Bardin, et al., “On some new analytic calculations for the process e + e \(\bar f\) f(),” Preprint CERN-TH-5434/89, 1989.

    Google Scholar 

  138. M. S. Bilenky and M. Sachwitz, “The forward-backward asymmetry A FB in e + e annihilation,” Zeuthen preprint PHE-89-10, 1989.

    Google Scholar 

  139. D. Bardin and A. Chizhov, “On the Oemαs) corrections to electroweak observables,” Proc. of Int. Topical Seminar on Physics of e + e interactions at LEP energies, 15–16 Nov. 1988, JINR Dubna, USSR, Eds. D. Bardin, et al., JINR preprint E2-89-525, 1989, pp. 42–48.

    Google Scholar 

  140. A. Djouadi, “O(ααs) vacuum polarization functions of the standard model gauge bosons,” Nuovo Cim. A 100, 357 (1988).

    ADS  Google Scholar 

  141. B. A. Kniehl, “Two loop corrections to the vacuum polarizations in perturbative QCD,” Nucl. Phys. B 347, 86 (1990).

    ADS  Google Scholar 

  142. B. Adeva, et al. (L3 Collab.), “A determination of the properties of the neutral intermediate vector boson Z 0,” Phys. Lett. B 231, 509 (1989).

    ADS  Google Scholar 

  143. B. Adeva, et al. (L3 Collab.), “Measurement of g(a) and g(ν), the neutral current coupling constants to leptons,” Phys. Lett. B 236, 109 (1990).

    ADS  Google Scholar 

  144. B. Adeva et al. (L3 Collab.), “A measurement of the Z 0 leptonic partial widths and the vector and axial vector coupling constants,” Phys. Lett. B 238, 122 (1990).

    ADS  Google Scholar 

  145. B. Adeva et al. (L3 Collab.), “A measurement of the Z 0 leptonic partial widths and the forward—backward asymmetry,” Internal note L3-005, CALT-68-1617, 1990.

    Google Scholar 

  146. B. Adeva, et al. (L3 Collab.), “Measurement of Z 0\(b\bar b\) decay properties,” Phys. Lett. B 241, 416 (1990).

    ADS  Google Scholar 

  147. B. Adeva, et al. (L3 Collab.), “A determination of electroweak parameters from Z 0 → μ+μ(γ),” Phys. Lett. B 247, 473 (1990).

    ADS  Google Scholar 

  148. B. Adeva, et al. (L3 Collab.), “A precision measurement of the number of neutrino species,” Phys. Lett. B 249, 341 (1990).

    ADS  Google Scholar 

  149. B. Adeva, et al. (L3 Collab.), “A determination of electroweak parameters from Z 0 decays into charged leptons,” Phys. Lett. B 250, 183 (1990).

    ADS  Google Scholar 

  150. P. Aarnio, et al. (DELPHI Collab.), “Measurement of the mass and width of the Z 0 particle from multi-hadronic final states produced in e + e annihilations,” Phys. Lett. B 231, 539 (1989).

    ADS  Google Scholar 

  151. P. Aarnio, et al. (DELPHI Collab.), “Study of hadronic decays of the Z 0 boson,” Phys. Lett. B 240, 271 (1990).

    ADS  Google Scholar 

  152. P. Aarnio, et al. (DELPHI Collab.), “Study of the leptonic decays of the Z 0 boson,” Phys. Lett. B 241, 425 (1990).

    ADS  Google Scholar 

  153. P. Abreu, et al. (DELPHI Collab.), “A precise measurement of the Z resonance parameters through its hadronic decays,” Phys. Lett. B 241, 435 (1990).

    ADS  Google Scholar 

  154. P. Abreu, et al. (DELPHI Collab.), “DELPHI results on the Z 0 resonance parameters through its hadronic and leptonic decay modes,” CERN preprint CERN-PPE/90-119, 1990.

    Google Scholar 

  155. G. Alekseev, et al., “The DELPHI experiment at LEP,” Part. Nucl. Lett. 98, 5 (2001).

    Google Scholar 

  156. G. Burgers, “The shape and size of the Z resonance,” Eds. G. Alexander, et al., Polarization at LEP, preprint CERN-TH-5119 1, 121–135 (1988).

    Google Scholar 

  157. A. Borrelli, et al., “Model independent analysis of the Z line shape in e + e annihilation,” Nucl. Phys. B 333, 357 (1990).

    ADS  Google Scholar 

  158. R. N. Cahn, “Analytic forms for the e + e annihilation cross-section near the Z including initial state radiation,” Phys. Rev. D 36, 2666 (1987).

    ADS  Google Scholar 

  159. B. Adeva, et al. (L3 Collab.), “Measurement of Z 0 decays to hadrons and a precise determination of the number of neutrino species,” Phys. Lett. B 237, 136 (1990).

    ADS  Google Scholar 

  160. W. Hollik, “Radiative corrections in the standard model and their role for precision tests of the electroweak theory,” Fortsch. Phys. 38, 165 (1990).

    ADS  Google Scholar 

  161. G. Alexander, et al., “Electroweak parameters of the Z 0 resonance and the standard model: the LEP Collab.,” Phys. Lett. B 276, 247 (1992).

    Google Scholar 

  162. L. Arnaudon, et al. (Working Group on LEP Energy, ALEPH, DELPHI, L3, OPAL Collab.), “Measurement of the mass of the Z boson and the energy calibration of LEP,” Phys. Lett. B 307, 187 (1993).

    MathSciNet  Google Scholar 

  163. D. Schaile, et al. (ALEPH, DELPHI, L3, OPAL and the LEP Electroweak Working Group Collab.), “Updated parameters of the Z 0 resonance from combined preliminary data of the LEP experiments,” Proc. of the Europ. Conf. on High Energy Physics, Marseille, France, 1993.

  164. LEP, ALEPH, DELPHI, L3, OPAL, Line Shape Sub-Group of the LEP Electroweak Working Group Collab, “Combination procedure for the precise determination of Z boson parameters from results of the LEP experiments,” arXiv:hep-ex/0101027.

  165. J. van der Bij, “Two loop large Higgs mass correction to vector boson masses,” Nucl. Phys. B 248, 141 (1984).

    ADS  Google Scholar 

  166. B. Kniehl, et al., “Hadronic contributions to O2) radiative corrections in e + e annihilation,” Phys. Lett. B 209, 337 (1988).

    ADS  Google Scholar 

  167. R. Barbieri, et al., “Two loop heavy top effects in the Standard Model,” Nucl. Phys. B 409, 105 (1993).

    ADS  MathSciNet  Google Scholar 

  168. G. Degrassi, S. Fanchiotti, and P. Gambino, “Current algebra approach to heavy top effects in ·(ρ),” Int. J. Mod. Phys. A 10, 1377 (1995).

    ADS  Google Scholar 

  169. L. Avdeev, et al., “O(αα 2s ) correction to the electroweak ρ parameter,” Phys. Lett. B 336, 560 (1994); “Erratum,” Ibid. 349, 597 (1995).

    ADS  Google Scholar 

  170. K. Chetyrkin, J. H. Kühn, and M. Steinhauser, “Corrections of order O(g f m 2t α ss ) to the ρ parameter,” Phys. Lett. B 351, 331 (1995).

    ADS  Google Scholar 

  171. S. Eidelman and F. Jegerlehner, “Hadronic contributions to g − 2 of the leptons and to the effective fine structure constant α(M 2Z ),” Z. Phys. C 67, 585 (1995).

    ADS  Google Scholar 

  172. Y. Schröder and M. Steinhauser, “Four-loop singlet contribution to the rho parameter,” Phys. Lett. B 622, 124 (2005).

    ADS  Google Scholar 

  173. A. Freitas, et al., “Calculation of fermionic two loop contributions to muon decay,” Nucl. Phys. Proc. Suppl. 89, 82 (2000).

    ADS  Google Scholar 

  174. A. Freitas, et al., “Complete fermionic two loop results for the M(W)-M(Z) interdependence,” Phys. Lett. B 495, 338 (2000).

    ADS  Google Scholar 

  175. M. Awramik, et al., “Precise prediction for the W boson mass in the standard model,” Phys. Rev. D 69, 053006 (2004).

    ADS  Google Scholar 

  176. M. Awramik, et al., “Towards better constraints on the Higgs boson mass: Two-loop fermionic corrections to \(\sin ^2 \theta _{eff}^{lept} \)” arXiv:hep-ph/0409142.

  177. M. Awramik, et al., “Two-loop fermionic electroweak corrections to the effective leptonic weak mixing angle in the standard model,” Nucl. Phys. Proc. Suppl. 135, 119 (2004).

    ADS  Google Scholar 

  178. M. Awramik, et al., “Complete two-loop electroweak fermionic corrections to \(\sin ^2 \theta _{eff}^{b\bar b} \) and indirect determination of the Higgs boson mass,” Phys. Rev. Lett. 93, 201805 (2004).

    ADS  Google Scholar 

  179. M. Awramik, M. Czakon, and A. Freitas, “Bosonic corrections to the effective weak mixing angle at O2),” Phys. Lett. B 642, 563 (2006).

    ADS  Google Scholar 

  180. M. Awramik, et al., “Two-loop electroweak fermionic corrections to \(t\bar t\)” Nucl. Phys. B 813, 174 (2009).

    ADS  MATH  Google Scholar 

  181. P. Baikov, et al., “Complete O 4s ) QCD corrections to hadronic Z decays,” Phys. Rev. Lett. 108, 222003 (2012).

    ADS  Google Scholar 

  182. J. Fleischer, et al., “One loop corrections to the process e + e \(c\bar c,b\bar b,t\bar t\) including hard bremsstrahlung,” arXiv:hep-ph/0203220.

  183. T. Hahn, et al., “O(α) electroweak corrections to the processes e + e → ττ+, \(c\bar c,b\bar b,t\bar t\): A comparison,” arXiv:hep-ph/0307132.

  184. F. Jegerlehner, “Electroweak effective couplings for future precision experiments,” Nuovo Cim. C 034S1, 31 (2011).

    Google Scholar 

  185. H. Baer, et al., The International Linear Collider Technical Design Report—Volume 2: Physics, arXiv:1306.6352 [hep-ph].

  186. H. Flächer, et al., “Revisiting the global electroweak fit of the standard model and beyond with Gfitter,” Eur. Phys. J. C 60, 543 (2009).

    ADS  Google Scholar 

  187. H. Flächer, et al., “Erratum to: Revisiting the global electroweak fit of the standard model and beyond with Gfitter,” Eur. Phys. J. C 71, 1718 (2011).

    ADS  Google Scholar 

  188. P. Baikov, K. Chetyrkin, and J. Kühn, “Order α4(s) QCD corrections to Z and τ decays,” Phys. Rev. Lett. 101, 012002 (2008).

    ADS  Google Scholar 

  189. G.-C. Cho and K. Hagiwara, “Supersymmetry versus precision experiments revisited,” Nucl. Phys. B 574, 623 (2000).

    ADS  Google Scholar 

  190. K. Hagiwara, et al., “A novel approach to confront electroweak data and theory,” Z. Phys. C 64, 559 (1994).

    ADS  Google Scholar 

  191. G.-C. Cho, et al., “The MSSM confronts the precision electroweak data and the muon g-2,” JHEP 1111, 068 (2011).

    ADS  Google Scholar 

  192. S. Riemann, “Precision electroweak physics at high energies,” Rept. Prog. Phys. 73, 126201 (2010).

    ADS  Google Scholar 

  193. M. Ciuchini, et al., “Electroweak precision observables, new physics and the nature of a 126 GeV Higgs boson,” JHEP 1308, 106 (2013).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Akhundov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhundov, A., Arbuzov, A.B., Riemann, S. et al. The ZFITTER project. Phys. Part. Nuclei 45, 529–549 (2014). https://doi.org/10.1134/S1063779614030022

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779614030022

Keywords

Navigation