Abstract
The ZFITTER project is aimed at the computation of high-precision theoretical predictions for various observables in high-energy electron-positron annihilation and other processes. The stages of the project development are described. Accent is made on applications to the analysis of LEP data. The present status of the project and perspectives are given as well.
Similar content being viewed by others
References
A. Akhundov, D. Bardin, and T. Riemann, “Hunting the hidden standard Higgs,” Phys. Lett. B 166, 111 (1986).
S. Glashow, “Partial symmetries of weak interactions,” Nucl. Phys. 22, 579 (1961).
S. Weinberg, “A model of leptons,” Phys. Rev. Lett. 19, 1264 (1967).
A. Salam, Proc. of the Eighth Nobel Symp., Ed. by N. Svartholm (Wiley-Intersci., N. Y., 1968).
G. ’t Hooft and M. Veltman, “Regularization and renormalization of gauge fields,” Nucl. Phys. B 44, 189 (1972).
C. Wohl, et al. (Particle Data Group Collab.), “Review of particle properties,” Rev. Mod. Phys. 56, S1 (1984).
LEP Electroweak Working Group (LEPEWWG) http://lepewwg.web.cern.ch/LEPEWWG/.
J. Beringer, et al. (Particle Data Group Collab.), “Review of Particle Physics (RPP),” Phys. Rev. D 86, 010001 (2012).
D. Bardin, et al., “A realistic approach to the standard Z peak,” Z. Phys. C 44, 493 (1989).
D. Y. Bardin, et al., “DIZET: A program package for the calculation of electroweak one loop corrections for the process e + e − → f + f − around the Z 0 peak,” Comput. Phys. Commun. 59, 303 (1990).
D. Bardin, et al., “ZFITTER: An analytical program for fermion pair production in e + e − annihilation,” Preprint CERN/TH.6443, 1992, arXiv:hep-ph/9412201.
D. Bardin, et al., “ZFITTER v.6.21: A semi-analytical program for fermion pair production in e + e − annihilation,” Comput. Phys. Commun. 133, 229 (2001).
A. Arbuzov, et al., “ZFITTER: A Semi-analytical program for fermion pair production in e + e − annihilation, from version 6.21 to version 6.42,” Comput. Phys. Commun. 174, 728 (2006).
G. Montagna, et al., “TOPAZ0: A Program for computing observables and for fitting cross-sections and forward—backward asymmetries around the Z 0 peak,” Comput. Phys. Commun. 76, 328 (1993).
G. Montagna, et al., “TOPAZ0 2.0: A Program for computing deconvoluted and realistic observables around the Z 0 peak,” Comput. Phys. Commun. 93, 120 (1996).
G. Montagna, et al., “TOPAZ0 4.0: A new version of a computer program for evaluation of deconvoluted and realistic observables at LEP-1 and LEP-2,” Comput. Phys. Commun. 117, 278 (1999).
M. Kobayashi and T. Maskawa, “CP violation in the renormalizable theory of weak interaction,” Prog. Theor. Phys. 49, 652 (1973).
F. Abe, et al. (CDF Collab.), “Observation of top quark production in \(\bar pp\) collisions,” Phys. Rev. Lett. 74, 2626 (1995).
S. Abachi, et al. (D 0 Collab.), “Observation of the top quark,” Phys. Rev. Lett. 74, 2632 (1995).
G. Aad, et al. (ATLAS Collab.), “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC,” Phys. Lett. B 716, 1 (2012).
S. Chatrchyan, et al. (CMS Collab.), “Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC,” Phys. Lett. B 716, 30 (2012).
F. Englert and R. Brout, “Broken symmetry and the mass of gauge vector mesons,” Phys. Rev. Lett. 13, 321 (1964).
P. W. Higgs, “Broken symmetries and the masses of gauge bosons,” Phys. Rev. Lett. 13, 508 (1964).
P. W. Higgs, “Broken symmetries, massless particles and gauge fields,” Phys. Lett. 12, 132 (1964).
Press release from Royal Swedish Academy of Sciences, 8 October 2013, available from http://www.nobelprize.org/nobel_prizes/physics/laureates/2013/press.pdf.
The Class for Physics of the Royal Swedish Academy of Sciences. Scientific Background on the Nobel Prize in Physics 2013: The BEH-Mechanism, Interactions with Short Range Forces and Scalar Particles. Available from http://www.nobelprize.org/nobel_prizes/physics/laureates/2013/advanced-physicsprize2013.pdf.
J. Mnich, “Experimental tests of the standard model in e + e − → \(f\bar f\) at the Z resonance,” Phys. Rept. 271, 181 (1996).
O. Eberhardt, “Extra doublets—Global analyses of Standard Model extensions in the fermionic or scalar sector,” PhD Thesis (KIT, Karlsruhe, 2013), arXiv:1309.1278.
S. Schael, et al., (ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavour Group Collab.), “Precision electroweak measurements on the Z resonance,” Phys. Rept. 427, 257 (2006).
S. Schael, et al., (ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavour Group Collab.), “Electroweak measurements in electron-positron collisions at W-boson-pair energies at LEP,” Phys. Rept. 532, 119 (2013).
D. Y. Bardin, “Twelve years of precision calculations for LEP. What’s next?,” J. Phys. G 29, 75 (2003).
D. Y. Bardin, L. Kalinovskaya, G. Nanava, “An electroweak library for the calculation of EWRC to e + e − → \(f\bar f\) within the topfit project,” arXiv:hep-ph/0012080.
J. Fleischer, et al., “Complete electroweak one loop radiative corrections to top pair production at TESLA: A Comparison,” arXiv:hep-ph/0202109.
J. Fleischer, et al., “Electroweak one loop corrections for e + e − annihilation into \(t\bar t\) including hard bremsstrahlung,” Eur. Phys. J. C 31, 37 (2003).
W. Beenakker, “Electroweak corrections: Techniques and applications,” PhD Thesis (Univ. Leiden, 1989).
D. Bardin and O. Fedorenko, “On high order effects for fermion elastic scattering processes in Weinberg-Salam theory. 1. Renormalization scheme,” Dubna preprint JINR-P2-11413, 1978.
D. Bardin and O. Fedorenko, “On high order effects for fermion elastic scattering processes in Weinberg-Salam theory. 2. Calculation of one loop diagrams,” Dubna preprint JINR-P2-11414, 1978.
D. Bardin and O. Fedorenko, “The one-loop approximation for the amplitude of the process νl q 1 → lq 2 in the Weinberg-Salam theory,” Dubna preprint JINR-P2-11461, 1978, [in Russian].
D. Bardin, P. Khristova, and O. Fedorenko, “On the lowest order electroweak corrections to spin 1/2 fermion scattering. 1. The one loop diagrammar,” Nucl. Phys. B 175, 435 (1980).
D. Y. Bardin, P. K. Khristova, and O. Fedorenko, “On the lowest order electroweak corrections to spin 1/2 fermion scattering. 2. The one loop amplitudes,” Nucl. Phys. B 197, 1 (1982).
D. Bardin, O. Fedorenko, and P. Khristova, “One loop effects in Weinberg-Salam theory,” Yad. Fiz. 35, 1220 (1982), [in Russian].
D. Bardin and P. Khristova, “Electroweak one loop corrections to amplitudes of fermion annihilation into a neutral vector boson pair,” Dubna preprint JINR-P2-82-836, 1982.
D. Bardin, O. Fedorenko, and P. Khristova, “On the lowest order electroweak corrections to fermion—boson scattering. Selfenergy and vertex diagrams,” Dubna preprint JINR-P2-82-840, 1982.
A. Akhundov, D. Bardin, and T. Riemann, “Electroweak one loop corrections to the decay of the neutral vector boson,” Nucl. Phys. B 276, 1 (1986).
D. Bardin, S. Riemann, and T. Riemann, “Electroweak one loop corrections to the decay of the charged vector boson,” Z. Phys. C 32, 121 (1986).
P. K. Khristova, “The one loop effects in the electroweak Glashow-Weinberg-Salam theory,” Acta Phys. Polon. B 18, 3 (1987).
H. Czyz, et al., “Is the anapole moment a physical observable?,” Can. J. Phys. 66, 132 (1988).
G. Mann and T. Riemann, “On mass shell renormalization of the Weinberg-Salam theory: An introductory lecture,” Zeuthen preprint PHE 83-09, 1983.
G. Mann and T. Riemann, “Particle mixing and renormalization in the Weinberg-Salam theory,” Talk at “Symposium Ahrenshoop 1981 on Special Topics In Gauge Field Theories,” Zeuthen preprint PHE 81-07, 1981, p. 88.
G. Mann and T. Riemann, “Muon number nonconserving decay of a heavy neutral gauge boson,” Zeuthen preprint PHE 82-5, 1982.
G. Mann and T. Riemann, “Nondiagonal Z decay: Z→ eμ,” Proc. of “Neutrino “82” (Balatonfuered, Hungary, 1982), vol. 2, p. 58.
G. Mann and T. Riemann, “Effective flavor changing weak neutral current in the standard theory and Z boson decay,” Annalen Phys., 1984, vol. 40, p. 334.
J. I. Illana and T. Riemann, “Charged lepton flavour violation from massive neutrinos in Z decays,” Phys. Rev. D 63, 053004 (2001).
J. I. Illana and M. Masip, “Lepton flavor violation in Z and lepton decays in supersymmetric models,” Phys. Rev. D 67, 035004 (2003).
A. Sirlin and A. Ferroglia, “Radiative corrections in precision electroweak physics: a historical perspective,” Rev. Mod. Phys. 85, 263 (2013).
D. Bardin, et al., “Electroweak radiative corrections to deep inelastic scattering at HERA. Neutral current scattering,” Z. Phys. C 42, 679 (1989).
A. Arbuzov, et al., “Hector 1.00: A Program for the calculation of QED, QCD and electroweak corrections to e p and lepton+− N deep inelastic neutral and charged current scattering,” Comput. Phys. Commun. 94, 128 (1996).
D. Bardin, et al., “ZFITTER v.6.21: A semi-analytical program for fermion pair production in e + e − annihilation,” Comput. Phys. Commun. 133, 229 (2001).
D. Y. Bardin and O. Fedorenko, “Evaluation of systematic uncertainties caused by radiative corrections in experiments on deep inelastic lepton neutrino n scattering,” Sov. J. Nucl. Phys. 30, 418 (1979).
D. Y. Bardin, O. Fedorenko, N. Shumeiko, “On the radiative corrections to p odd asymmetry in deep inelastic scattering of polarized leptons on nucleons,” Sov. J. Nucl. Phys. 32, 403 (1980).
D. Bardin, et al., “Energy dependent width effects in e + e − annihilation near the Z boson pole,” Phys. Lett. B 206, 539 (1988).
S. Riemann, “A comparison of programs used in L3 for the analysis of Bhabha scattering,” Zeuthen Preprint. PHE-91-04, 1991.
D. Bardin, W. Hollik, and T. Riemann, “Bhabha scattering with higher order weak loop corrections,” Z. Phys. C 49, 485 (1991).
J. Field and T. Riemann, “BHAGENE3: A Monte Carlo event generator for lepton pair production and wide angle Bhabha scattering in e + e − collisions near the Z peak,” Comput. Phys. Commun. 94, 53 (1996).
D. Bardin, et al., “Electroweak radiative corrections to deep inelastic scattering at HERA. Charged current scattering,” Z. Phys. C 44, 149 (1989).
D. Bardin, et al., “Predictions for \(\bar \nu \)νγ production at LEP,” Eur. Phys. J. C 24, 373 (2002).
D. Y. Bardin, et al., “Atomic parity violation and precision physics,” Eur. Phys. J. C 22, 99 (2001).
A. Leike, S. Riemann, and T. Riemann, “ZZ′ mixing in presence of standard weak loop corrections,” arXiv:hep-ph/9808374. ν
T. Aaltonen, et al. (CDF Collab.), “Indirect measurement of 2θ W (MW) using e + e − pairs in the Z-boson region with \(p\bar p\) collisions at a center-of-momentum energy of 1.96 TeV,” Phys. Rev. D 88, 072002 (2013).
W. Wetzel, “Electroweak radiative corrections for e + e − → μ+μ− at LEP energies,” Nucl. Phys. B 227, 1 (1983).
B. Lynn and R. Stuart, “Standard model electroweak radiative corrections to longitudinal polarization asymmetry A Pol and forward-backward asymmetry A FB in e + e − → μ+μ− on and off the Z 0 resonance,” Nucl. Phys. B 253, 216 (1985).
F. A. Berends, R. Kleiss, and S. Jadach, “Radiative corrections to muon pair and quark pair production in electron-positron collisions in the Z 0 region,” Nucl. Phys. B 202, 63 (1982).
D. Bardin and N. Shumeiko, “An exact calculation of the lowest order electromagnetic correction to the elastic scattering,” Nucl. Phys. B 127, 242 (1977).
A. A. Akhundov, et al., “Model independent QED corrections to the process ep → eX,” Fortsch. Phys. 44, 373 (1996).
A. Akhundov, et al., “Some integrals for exact calculation of QED bremsstrahlung,” Dubna preprint JINR-E2-84-777, 1984.
A. Akhundov, et al., “Exact calculations of the lowest order electromagnetic corrections for the processes e + e − → μ+μ− (τ+τ−),” Sov. J. Nucl. Phys. 42, 762 (1985).
O. Fedorenko and T. Riemann, “Analytic bremsstrahlung integration for the process e + e − → μ+μ−γ in QED,” Acta Phys. Polon. B 18, 761 (1987).
D. Bardin, et al., “Electroweak working group report,” 1995, arXiv:hep-ph/9709229.
K. Chetyrkin, J. H. Kühn, and A. Kwiatkowski, “QCD corrections to the e + e − cross-section and the Z boson decay rate: concepts and results,” Phys. Rept. 277, 189 (1996).
D. Bardin, M. Grünewald, and G. Passarino, “Precision calculation project report,” arXiv:hep-ph/9902452.
D. Y. Bardin and G. Passarino, The Standard Model in the Making: Precision Study of the Electroweak Interactions (Oxford Univ. Press, 1999).
W. Beenakker, F. A. Berends, and W. van Neerven, “Applications of renormalization group methods to radiative corrections,” Proc. of Workshop on Electroweak Radiative Corrections, 3–7 April 1989, Ringberg, Germany, Ed. by J. H. Kühn, Radiative Corrections for e + e − Collisions (Springer-Verlag, Berlin, 1989), p. 3.
F. A. Berends and R. Kleiss, “Distributions in the process e + e − → μ+μ−(γ),” Nucl. Phys. B 177, 237 (1981).
S. Jadach, J. H. Kühn, and Z. Was, “TAUOLA: A Library of Monte Carlo programs to simulate decays of polarized tau leptons,” Comput. Phys. Commun. 64, 275 (1990).
S. Jadach, B. Ward, and Z. Was, “The Monte Carlo program KORALZ, version 3.8, for the lepton or quark pair production at LEP/SLC energies,” Comput. Phys. Commun. 66, 276 (1991).
G. Montagna, F. Piccinini, and O. Nicrosini, “Structure function formulation of e + e − → \(f\bar f\) around the Z 0 resonance in realistic setup,” Phys. Rev. D 48, 1021 (1993).
S. Jadach, B. Ward, and Z. Was, “The precision Monte Carlo event generator KK for two-fermion final states in e + e − collisions,” Comput. Phys. Commun. 130, 260 (2000).
“Z physics at LEP1: Event generators and software,” Eds. by G. Altarelli, R. Kleiss, and C. Verzegnassi, CERN Yellow Report. CERN-89-08, 1989, vol. 3.
T. Riemann, M. Sachwitz, and D. Bardin, “The Z boson line shape at LEP,” Proc. of XI Warsaw Symposium on Elementary Particle Physics: New Theories in Physics, 23–27 May 1988, Kazimierz, Poland, Eds. Z. Ajduk, S. Pokorski, A. Trautman, and N. J. Teaneck, World Scientific, 1988, pp. 238–246.
M. Consoli, W. Hollik, and F. Jegerlehner, “The effect of the top quark on the M(W)-M(Z) interdependence and possible decoupling of heavy fermions from low energy physics,” Phys. Lett. B 227, 167 (1989).
F. A. Berends, R. Kleiss, S. Jadach, “Monte Carlo simulation of radiative corrections to the processes e + e − → μ+μ− and e + e − → \(\bar qq\) in the Z 0 region,” Comput. Phys. Commun. 29, 185 (1983).
D. Bardin, O. Fedorenko, and T. Riemann, “The electromagnetic α3 contributions to e + e −annihilation into fermions in the electroweak theory. Total cross-section σt and integrated asymmetry A FB,” Dubna preprint JINR-E2-87-663, 1987.
D. Bardin, et al., “The electromagnetic α3 contributions to e + e − annihilation into fermions in the electroweak theory. Total cross-section σt and integrated asymmetry A FB,” Dubna preprint JINR-E2-88-324, 1988.
A. Leike, T. Riemann, and M. Sachwitz, “QED corrected extra Z boson effects at e + e − colliders,” Phys. Lett. B 241, 267 (1990).
A. Leike and T. Riemann, “QED corrections to the forward backward asymmetry with extra Z bosons for e + e − → f + f −,” Z. Phys. C 51, 113 (1991).
A. Djouadi, et al., “Signals of new gauge bosons at future e + e − colliders,” Z. Phys. C 56, 289 (1992).
O. Adriani, et al. (L3 Collab.), “Search for a Z′ at the Z resonance,” Phys. Lett. B 306, 187 (1993).
S. Riemann, “Suche nach einem Z′-Boson auf der Z-Resonanz mit dem L3-Detektor am LEP-Beschleuniger,” Dissertation (Technische Hochschule Aachen, 1994); Internal Report: DESY-Zeuthen 94-01, September 1994.
D. Bardin, et al., “The convolution integral for the forward-backward asymmetry in e + e − annihilation,” Phys. Lett. B 229, 405 (1989).
D. Bardin, et al., “Analytic approach to the complete set of QED corrections to fermion pair production in e + e − annihilation,” Nucl. Phys. B 351, 1 (1991).
D. Bardin, et al., “QED corrections with partial angular integration to fermion pair production in e + e − annihilation,” Phys. Lett. B 255, 290 (1991).
M. Bilenky and A. Sazonov, “QED corrections at Z 0 pole with realistic kinematical cuts,” Dubna preprint JINR-E2-89-792, 1989.
G. Passarino, “Hard bremsstrahlung corrections for the process e + e − → μ+μ−,” Nucl. Phys. B 204, 237 (1982).
P. Christova, et al., “Predictions of ZFITTER v.6 for fermion pair production with acollinearity cut,” arXiv:hep-ph/9908289.
P. Christova, et al., “Radiative corrections to e + e − → \(\bar ff\),” arXiv:hep-ph/0002054.
P. Christova, et al., “Predictions for fermion pair production at LEP,” arXiv:hep-ph/9812412.
M. A. Jack, “Semianalytical calculation of QED radiative corrections to e + e − → \(\bar ff\) with special emphasis on kinematical cuts to the final state,” arXiv:hep-ph/0009068.
P. Christova, M. Jack, and T. Riemann, “Hard photon emission in e + e − → \(\bar ff\) with realistic cuts,” Phys. Lett. B 456, 264 (1999).
H. Strubbe, “Manual for Schoonschip: A CDC 6000/7000 program for symbolic evaluation of algebraic expressions,” Comput. Phys. Commun. 8, 1 (1974).
M. J. Veltman and D. N. Williams, Schoonschip’91, arXiv:hep-ph/9306228.
R. N. Fedorova, et al., “Computer algebra in physical research of JINR,” Lecture Notes in Computer Science 378, 1 (1989).
J. Vermaseren, “Symbolic manipulation with FORM,” Version 2. Computer Algebra (Nederland, Amsterdam, 1991).
J. Vermaseren, “New features of FORM,” arXiv:math-ph/0010025.
F. A. Berends, et al., “The standard Z peak,” Phys. Lett. B 203, 177 (1988).
A. Leike, T. Riemann, and J. Rose, “S matrix approach to the Z line shape,” Phys. Lett. B 273, 513 (1991).
T. Riemann, “Cross-section asymmetries around the Z peak,” Phys. Lett. B 293, 451 (1992).
S. Kirsch and S. Riemann, A Combined Fit to the L3 Data Using the S-Matrix Approach (First Resultats), L3 note, No. 1233, 1992.
S. Kirsch and S. Riemann, L3 Results of Model-Independent Analyses, L3 note, No. 1656, 1994.
O. Adriani, et al. (L3 Collab.), “An S matrix analysis of the Z resonance,” Phys. Lett. B 315, 494 (1993).
S. Kirsch and T. Riemann, “SMATASY: A program for the model independent description of the Z resonance,” Comput. Phys. Commun. 88, 89 (1995).
M. Awramik, M. Czakon, and A. Freitas, “Electroweak two-loop corrections to the effective weak mixing angle,” JHEP 0611, 048 (2006).
A. Akhundov, D. Y. Bardin, and A. Leike, “QED radiative corrections to massive fermion production in e + e − annihilation,” Phys. Lett. B 261, 321 (1991).
A. Arbuzov, D. Y. Bardin, and A. Leike, “Analytic final state corrections with cut for e + e − → massive fermions,” Mod. Phys. Lett. A 7, 2029 (1992); “Erratum,” Ibid. 9, 1515 (1994).
M. Jack, et al., “Predictions for fermion pair production at e + e − colliders,” Nucl. Phys. Proc. Suppl. 89, 15 (2000).
A. Arbuzov, “Higher order pair corrections to electron positron annihilation,” JHEP 0107, 043 (2001).
A. Arbuzov, “Nonsinglet splitting functions in QED,” Phys. Lett. B 470, 252 (1999).
F. Boudjema, et al., “Standard model processes,” CERN Yellow Report “Physics at LEP 2” 1, 207.
A. B. Arbuzov, et al., “Structure function approach in QED for high energy processes,” Phys. Part. Nucl. 41, 394 (2010).
A. B. Arbuzov, et al., “Radiative corrections to the Bhabha scattering,” Phys. Part. Nucl. 41, 636 (2010).
D. Y. Bardin and G. Passarino, “Upgrading of precision calculations for electroweak observables,” arXiv:hep-ph/9803425.
M. Kobel, Z. Was, et al. (Two Fermion Working Group Collab.), “Two-fermion production in electron positron collisions,” arXiv:hep-ph/0007180.
T. Riemann, et al., “On the derivation of standard model parameters from the Z peak,” Proc. of Workshop on Electroweak Radiative Corrections, 3–7 April 1989, Ringberg, Germany, Ed. by J. H. Kuhn, Radiative Corrections for e + e − Collisions (Springer-Verlag, Berlin, 1989), p. 349.
D. Bardin and T. Riemann, “Electroweak radiative corrections at the Z peak,” Proc. of Workshop on Radiative Corrections: Results And Perspectives (RADCOR1989), 9–14 July 1989, Brighton, England, Eds. N. Dombey and F. Boudjema (Plenum Press, N.Y., 1990), NATO Advanced Study Institute, Series B: Physics 233, 169.
M. Böhm, et al., “Report on working group A: Renormalization schemes for electroweak radiative corrections,” Proc. of Workshop on Radiative Corrections: Results and Perspectives (RADCOR1989), 9–14 July 1989, Brighton, England, Eds. N. Dombey and F. Boudjema (Plenum Press, N.Y., 1990), NATO Advanced Study Institute, Series B: Physics 233, 233.
M. Böhm, et al., “Forward-backward asymmetries,” in CERN Yellow Report 89-08, preprint CERN/TH-5536, 1989.
R. Leiste, T. Riemann, M. Sachwitz, et al., “Precise measurement of M Z and ΓZ from the Z peak: A contribution to the running strategy of LEP 1,” Zeuthen preprint PHE-89-02, 1989.
D. Bardin, et al., “On some new analytic calculations for the process e + e − → \(\bar f\) f(nγ),” Preprint CERN-TH-5434/89, 1989.
M. S. Bilenky and M. Sachwitz, “The forward-backward asymmetry A FB in e + e − annihilation,” Zeuthen preprint PHE-89-10, 1989.
D. Bardin and A. Chizhov, “On the O(αemαs) corrections to electroweak observables,” Proc. of Int. Topical Seminar on Physics of e + e − interactions at LEP energies, 15–16 Nov. 1988, JINR Dubna, USSR, Eds. D. Bardin, et al., JINR preprint E2-89-525, 1989, pp. 42–48.
A. Djouadi, “O(ααs) vacuum polarization functions of the standard model gauge bosons,” Nuovo Cim. A 100, 357 (1988).
B. A. Kniehl, “Two loop corrections to the vacuum polarizations in perturbative QCD,” Nucl. Phys. B 347, 86 (1990).
B. Adeva, et al. (L3 Collab.), “A determination of the properties of the neutral intermediate vector boson Z 0,” Phys. Lett. B 231, 509 (1989).
B. Adeva, et al. (L3 Collab.), “Measurement of g(a) and g(ν), the neutral current coupling constants to leptons,” Phys. Lett. B 236, 109 (1990).
B. Adeva et al. (L3 Collab.), “A measurement of the Z 0 leptonic partial widths and the vector and axial vector coupling constants,” Phys. Lett. B 238, 122 (1990).
B. Adeva et al. (L3 Collab.), “A measurement of the Z 0 leptonic partial widths and the forward—backward asymmetry,” Internal note L3-005, CALT-68-1617, 1990.
B. Adeva, et al. (L3 Collab.), “Measurement of Z 0 → \(b\bar b\) decay properties,” Phys. Lett. B 241, 416 (1990).
B. Adeva, et al. (L3 Collab.), “A determination of electroweak parameters from Z 0 → μ+μ−(γ),” Phys. Lett. B 247, 473 (1990).
B. Adeva, et al. (L3 Collab.), “A precision measurement of the number of neutrino species,” Phys. Lett. B 249, 341 (1990).
B. Adeva, et al. (L3 Collab.), “A determination of electroweak parameters from Z 0 decays into charged leptons,” Phys. Lett. B 250, 183 (1990).
P. Aarnio, et al. (DELPHI Collab.), “Measurement of the mass and width of the Z 0 particle from multi-hadronic final states produced in e + e − annihilations,” Phys. Lett. B 231, 539 (1989).
P. Aarnio, et al. (DELPHI Collab.), “Study of hadronic decays of the Z 0 boson,” Phys. Lett. B 240, 271 (1990).
P. Aarnio, et al. (DELPHI Collab.), “Study of the leptonic decays of the Z 0 boson,” Phys. Lett. B 241, 425 (1990).
P. Abreu, et al. (DELPHI Collab.), “A precise measurement of the Z resonance parameters through its hadronic decays,” Phys. Lett. B 241, 435 (1990).
P. Abreu, et al. (DELPHI Collab.), “DELPHI results on the Z 0 resonance parameters through its hadronic and leptonic decay modes,” CERN preprint CERN-PPE/90-119, 1990.
G. Alekseev, et al., “The DELPHI experiment at LEP,” Part. Nucl. Lett. 98, 5 (2001).
G. Burgers, “The shape and size of the Z resonance,” Eds. G. Alexander, et al., Polarization at LEP, preprint CERN-TH-5119 1, 121–135 (1988).
A. Borrelli, et al., “Model independent analysis of the Z line shape in e + e − annihilation,” Nucl. Phys. B 333, 357 (1990).
R. N. Cahn, “Analytic forms for the e + e − annihilation cross-section near the Z including initial state radiation,” Phys. Rev. D 36, 2666 (1987).
B. Adeva, et al. (L3 Collab.), “Measurement of Z 0 decays to hadrons and a precise determination of the number of neutrino species,” Phys. Lett. B 237, 136 (1990).
W. Hollik, “Radiative corrections in the standard model and their role for precision tests of the electroweak theory,” Fortsch. Phys. 38, 165 (1990).
G. Alexander, et al., “Electroweak parameters of the Z 0 resonance and the standard model: the LEP Collab.,” Phys. Lett. B 276, 247 (1992).
L. Arnaudon, et al. (Working Group on LEP Energy, ALEPH, DELPHI, L3, OPAL Collab.), “Measurement of the mass of the Z boson and the energy calibration of LEP,” Phys. Lett. B 307, 187 (1993).
D. Schaile, et al. (ALEPH, DELPHI, L3, OPAL and the LEP Electroweak Working Group Collab.), “Updated parameters of the Z 0 resonance from combined preliminary data of the LEP experiments,” Proc. of the Europ. Conf. on High Energy Physics, Marseille, France, 1993.
LEP, ALEPH, DELPHI, L3, OPAL, Line Shape Sub-Group of the LEP Electroweak Working Group Collab, “Combination procedure for the precise determination of Z boson parameters from results of the LEP experiments,” arXiv:hep-ex/0101027.
J. van der Bij, “Two loop large Higgs mass correction to vector boson masses,” Nucl. Phys. B 248, 141 (1984).
B. Kniehl, et al., “Hadronic contributions to O(α2) radiative corrections in e + e −annihilation,” Phys. Lett. B 209, 337 (1988).
R. Barbieri, et al., “Two loop heavy top effects in the Standard Model,” Nucl. Phys. B 409, 105 (1993).
G. Degrassi, S. Fanchiotti, and P. Gambino, “Current algebra approach to heavy top effects in ·(ρ),” Int. J. Mod. Phys. A 10, 1377 (1995).
L. Avdeev, et al., “O(αα 2s ) correction to the electroweak ρ parameter,” Phys. Lett. B 336, 560 (1994); “Erratum,” Ibid. 349, 597 (1995).
K. Chetyrkin, J. H. Kühn, and M. Steinhauser, “Corrections of order O(g f m 2t α ss ) to the ρ parameter,” Phys. Lett. B 351, 331 (1995).
S. Eidelman and F. Jegerlehner, “Hadronic contributions to g − 2 of the leptons and to the effective fine structure constant α(M 2Z ),” Z. Phys. C 67, 585 (1995).
Y. Schröder and M. Steinhauser, “Four-loop singlet contribution to the rho parameter,” Phys. Lett. B 622, 124 (2005).
A. Freitas, et al., “Calculation of fermionic two loop contributions to muon decay,” Nucl. Phys. Proc. Suppl. 89, 82 (2000).
A. Freitas, et al., “Complete fermionic two loop results for the M(W)-M(Z) interdependence,” Phys. Lett. B 495, 338 (2000).
M. Awramik, et al., “Precise prediction for the W boson mass in the standard model,” Phys. Rev. D 69, 053006 (2004).
M. Awramik, et al., “Towards better constraints on the Higgs boson mass: Two-loop fermionic corrections to \(\sin ^2 \theta _{eff}^{lept} \)” arXiv:hep-ph/0409142.
M. Awramik, et al., “Two-loop fermionic electroweak corrections to the effective leptonic weak mixing angle in the standard model,” Nucl. Phys. Proc. Suppl. 135, 119 (2004).
M. Awramik, et al., “Complete two-loop electroweak fermionic corrections to \(\sin ^2 \theta _{eff}^{b\bar b} \) and indirect determination of the Higgs boson mass,” Phys. Rev. Lett. 93, 201805 (2004).
M. Awramik, M. Czakon, and A. Freitas, “Bosonic corrections to the effective weak mixing angle at O(α2),” Phys. Lett. B 642, 563 (2006).
M. Awramik, et al., “Two-loop electroweak fermionic corrections to \(t\bar t\)” Nucl. Phys. B 813, 174 (2009).
P. Baikov, et al., “Complete O(α 4s ) QCD corrections to hadronic Z decays,” Phys. Rev. Lett. 108, 222003 (2012).
J. Fleischer, et al., “One loop corrections to the process e + e − → \(c\bar c,b\bar b,t\bar t\) including hard bremsstrahlung,” arXiv:hep-ph/0203220.
T. Hahn, et al., “O(α) electroweak corrections to the processes e + e − → τ−τ+, \(c\bar c,b\bar b,t\bar t\): A comparison,” arXiv:hep-ph/0307132.
F. Jegerlehner, “Electroweak effective couplings for future precision experiments,” Nuovo Cim. C 034S1, 31 (2011).
H. Baer, et al., The International Linear Collider Technical Design Report—Volume 2: Physics, arXiv:1306.6352 [hep-ph].
H. Flächer, et al., “Revisiting the global electroweak fit of the standard model and beyond with Gfitter,” Eur. Phys. J. C 60, 543 (2009).
H. Flächer, et al., “Erratum to: Revisiting the global electroweak fit of the standard model and beyond with Gfitter,” Eur. Phys. J. C 71, 1718 (2011).
P. Baikov, K. Chetyrkin, and J. Kühn, “Order α4(s) QCD corrections to Z and τ decays,” Phys. Rev. Lett. 101, 012002 (2008).
G.-C. Cho and K. Hagiwara, “Supersymmetry versus precision experiments revisited,” Nucl. Phys. B 574, 623 (2000).
K. Hagiwara, et al., “A novel approach to confront electroweak data and theory,” Z. Phys. C 64, 559 (1994).
G.-C. Cho, et al., “The MSSM confronts the precision electroweak data and the muon g-2,” JHEP 1111, 068 (2011).
S. Riemann, “Precision electroweak physics at high energies,” Rept. Prog. Phys. 73, 126201 (2010).
M. Ciuchini, et al., “Electroweak precision observables, new physics and the nature of a 126 GeV Higgs boson,” JHEP 1308, 106 (2013).
Author information
Authors and Affiliations
Corresponding author
Additional information
The article is published in the original.
Rights and permissions
About this article
Cite this article
Akhundov, A., Arbuzov, A.B., Riemann, S. et al. The ZFITTER project. Phys. Part. Nuclei 45, 529–549 (2014). https://doi.org/10.1134/S1063779614030022
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1063779614030022