Skip to main content
Log in

Neutrino radiative decay in external field and medium

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The current state of the theory of massive neutrino radiative decay is reviewed. By extending our previous studies, we thoroughly analyze the process of radiative decay of a massive Dirac neutrino in the strong external magnetic field HH 0 = m 2 e c 3 / = 4.41 × 1013 G in the presence of medium (degenerate electron gas), and calculate its probability. It is shown that, in the presence of dense medium, the latter quantity becomes much larger than that in the magnetic field in the case of both relativistic and nonrelativistic neutrinos. Possible astrophysical applications of the obtained results are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Pontecorvo, “Mesonium and antimesonium,” Zh. Eksp. Teor. Fiz. 33(2), 549–551 (1957).

    Google Scholar 

  2. B. Pontecorvo, “Inverse β-processes and lepton charge nonconservation,” Zh. Eksp. Teor. Fiz. 34(1), 247–249 (1957).

    Google Scholar 

  3. S. Bilenky, Introduction to the Physics of Massive and Mixed Neutrinos in Lecture Notes in Physics, vol. 817 (Springer, Berlin, 2010).

    Google Scholar 

  4. C. Giunti and C. W. Kim, Fundamentals of Neutrino Physics and Astrophysics (Oxford Univ. Press, Oxford, 2007).

    Book  Google Scholar 

  5. Z. Maki, M. Nakagawa, and S. Sakata, “Remarks on the unified model of elementary particles,” Prog. Theor. Phys. 28(5), 870–880 (1962).

    Article  ADS  MATH  Google Scholar 

  6. The ALEPH Collaboration, The DELPHI Collaboration, The L3 Collaboration, The OPAL Collaboration, The SLD Collaboration, The LEP Electroweak Working Group, The SLD Electroweak and Heavy Flavour Groups, “Precision electroweak measurements on the Z resonance,” Phys. Rep. 427, 257–454 (2006).

    ADS  Google Scholar 

  7. A. Kusenko, “Sterile neutrinos: the dark side of the light fermions,” Phys. Rep. 481, 1–28 (2009).

    Article  ADS  Google Scholar 

  8. A. Boyarsky, O. Ruchayskiy, and M. Shaposhnikov, “The role of sterile neutrinos in cosmology and astrophysics,” Ann. Rev. Nucl. Part. Sci. 59(1), 191–214 (2009).

    Article  ADS  Google Scholar 

  9. K. Abazajian, M. Acero, S. Agarwalla, et al., “Light sterile neutrinos: a white paper,” arXiv:1204.5379 [hepph].

  10. M. C. Gonzalez-Garcia, M. Maltoni, “Phenomenology with massive neutrinos,” Phys. Rep. 460(1–3), 1–129 (2008).

    Article  ADS  Google Scholar 

  11. G. G. Raffelt, Stars as Laboratories for Fundamental Physics (Univ. of Chicago Press, Chicago, 1996).

    Google Scholar 

  12. R. N. Mohapatra and P. B. Pal, Massive Neutrinos in Physics and Astrophysics in Lecture Notes in Physics, vol. 72, third ed. (World Scientific, Singapore, 2004).

    Google Scholar 

  13. R. N. Mohapatra, S. Antusch, K. S. Babu, et al., “Theory of neutrinos: a white paper,” Rep. Prog. Phys. 70, 1757–1867 (2007).

    Article  ADS  Google Scholar 

  14. F. Boehm and P. Vogel, Physics of Massive Neutrinos, second ed. (Cambridge Univ. Press, Cambridge, 1992).

    Book  Google Scholar 

  15. K. Zuber, Neutrino Physics in High Energy Physics, Cosmology and Gravitation (Taylor & Francis Group, New York-London, 2004).

    Google Scholar 

  16. Y. Chikashige, R. N. Mohapatra, and R. Peccei, “Are there real Goldstone bosons associated with broken lepton number?,” Phys. Lett. B 98, 265–268 (1981).

    Article  ADS  Google Scholar 

  17. C. Giunti, C. W. Kim, U. W. Lee, and W. P. Lam, “Majoron decay of neutrinos in matter,” Phys. Rev. D 45, 1557–1568 (1992).

    Article  ADS  Google Scholar 

  18. J. Schechter and J. W. F. Valle, “Neutrino decay and spontaneous violation of lepton number,” Phys. Rev. D 25, 774–783 (1982).

    Article  ADS  Google Scholar 

  19. R. E. Shrock, “General theory of weak processes involving neutrinos. II. Pure leptonic decays,” Phys. Rev. D 24, 1275–1309 (1981).

    Article  ADS  Google Scholar 

  20. S.-H. Kim, K.-I. Takemasa, Y. Takeuchi, S. Matsuura, “Search for radiative decays of cosmic background neutrino using cosmic infrared background energy spectrum,” J. Phys. Soc. Jpn. 81, 024101 (2012).

    Article  ADS  Google Scholar 

  21. S. N. Gninenko, “New limits on radiative sterile neutrino decays from a search for single photons in neutrino interactions,” Phys. Lett. B 710, 86–90 (2012).

    Article  ADS  Google Scholar 

  22. P. B. Pal and L. Wolfenstein, “Radiative decays of massive neutrinos,” Phys. Rev. D 25, 766–773 (1982).

    Article  ADS  Google Scholar 

  23. S. L. Glashow, J. Iliopoulos, and L. Maiani, “Weak interactions with lepton-hadron symmetry,” Phys. Rev. D 2, 1285–1292 (1970).

    Article  ADS  Google Scholar 

  24. S. M. Bilenky and S. T. Petkov, “Massive neutrinos and neutrino oscillations,” Rev. Mod. Phys. 59, 671–754 (1987).

    Article  ADS  Google Scholar 

  25. A. Yu. Potekhin, “The physics of neutron stars,” Phys.-Usp. 53, 1235–1256 (2010).

    Article  ADS  Google Scholar 

  26. D. V. Galtsov and N. S. Nikitina, “Photoneutrino processes in a strong field,” Zh. Eksp. Teor. Fiz. 62, 2008–2011 (1972).

    Google Scholar 

  27. V. V. Skobelev, “On the \(\gamma \to \nu \bar \nu\) and ν → γν reactions in strong magnetic fields,” Zh. Eksp. Teor. Fiz. 71, 1263–1267 (1976).

    ADS  Google Scholar 

  28. A. A. Gvozdev, N. V. Mikheev, and L. A. Vassilevskaya, “The magnetic catalysis of the radiative decay of a massive neutrino in the standard model with lepton mixing,” Phys. Lett. B 289(1–2), 103–108 (1992).

    Article  ADS  Google Scholar 

  29. L. A. Vassilevskaya, A. A. Gvozdev, and N. V. Mikheev, “Decay of the massive neutrino νi → νjγ in a crossed field,” Phys. At. Nucl. 57, 117 (1994).

    Google Scholar 

  30. A. A. Gvozdev, N. V. Mikheev, and L. A. Vassilevskaya, “Radiative decay of the massive neutrino in external electromagnetic fields,” Phys. Rev. D 54, 5674–5685 (1996).

    Article  ADS  Google Scholar 

  31. V. V. Skobelev, “Decay of massive neutrinos in a strong magnetic field,” J. Exp. Theor. Phys. 81, 1–6 (1995).

    ADS  Google Scholar 

  32. V. Ch. Zhukovskii, P. A. Eminov, and A. E. Grigoruk, “Radiative decay of a massive neutrino in the Weinberg-Salam model with mixing in a constant uniform magnetic field,” Mod. Phys. Lett. A 11, 3119–3126 (1996).

    Article  ADS  Google Scholar 

  33. M. Kachelriess and G. Wunner, “Radiative neutrino decays in very strong magnetic fields,” Phys. Lett. B 390, 263–267 (1997).

    Article  ADS  Google Scholar 

  34. A. N. Ioannisian and G. G. Raffelt, “Cherenkov radiation by massless neutrinos in a magnetic field,” Phys. Rev. D 55, 7038–7043 (1997).

    Article  ADS  Google Scholar 

  35. A. A. Sokolov and I. M. Ternov, Relativistic Electron, second ed. (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  36. S. L. Adler, “Photon splitting and photon dispersion in a strong magnetic field,” Ann. Phys. (N.Y.) 67, 599–647 (1971).

    Article  ADS  Google Scholar 

  37. A. E. Shabad, “Vacuum and quantum relativistic gas polarization in an external field,” in Proceedings of the Lebedev Physical Institute: Polarization Effects in External Gauge Fields, vol. 192 (Nauka, Moscow, 1988) pp. 5–152.

    Google Scholar 

  38. A. A. Gvozdev, N. V. Mikheev, and L. A. Vassilevskaya, “Resonance neutrino bremsstrahlung ν → νγ in a strong magnetic field,” Phys. Lett. B 410, 211–215 (1997).

    Article  ADS  Google Scholar 

  39. R. A. Anikin and N. V. Mikheev, “Process ν → νγ in strong magnetic field with allowance for positronium contribution to photon dispersion,” J. Exp. Theor. Phys. 115, 411 (2012).

    Article  ADS  Google Scholar 

  40. A. V. Borisov, A. I. Ternov, and V. Ch. Zhukovsky, “Electron-positron pair production by a neutrino in an external electromagnetic field,” Phys. Lett. B 318, 489–491 (1993).

    Article  ADS  Google Scholar 

  41. A. V. Borisov and N. B. Zamorin, “Electron-positron pair production in the decay of massive neutrino in the constant external field,” Phys. At. Nucl. 62, 1543 (1999).

    Google Scholar 

  42. A. V. Kuznetsov and N. V. Mikheev, “Electronpositron production by neutrino in the magnetic field,” Phys. At. Nucl. 60, 1865 (1997).

    Google Scholar 

  43. J. C. D’Olivo, J. F. Nieves, and P. B. Pal, “Radiative neutrino decay in a medium,” Phys. Rev. Lett. 64, 1088–1090 (1990).

    Article  ADS  Google Scholar 

  44. C. Giunti, C. W. Kim, and W. P. Lam, “Radiative decay and magnetic moment of neutrinos in matter,” Phys. Rev. D 43, 164–169 (1991).

    Article  ADS  Google Scholar 

  45. V. N. Oraevsky, V. B. Semikoz, and Ya. A. Smorodinsky, “Electrodynamics of neutrinos in a medium,” Phys. Part. Nucl. 25, 129 (1994).

    Google Scholar 

  46. D. Grasso and V. Semikoz, “Radiative neutrino decay in media,” Phys. Rev. D 60, 053010 (1999).

    Article  ADS  Google Scholar 

  47. A. E. Lobanov and A. I. Studenikin, “Spin light of neutrino in matter and electromagnetic field,” Phys. Lett. B 564, 27–34 (2003).

    Article  ADS  Google Scholar 

  48. A. I. Studenikin and A. I. Ternov, “Neutrino quantum states and spin light in matter,” Phys. Lett. B 608(1–2), 107–114 (2005).

    Article  ADS  Google Scholar 

  49. A. V. Grigoriev, A. I. Studenikin, and A. I. Ternov, “Quantum theory of neutrino spin light in dense matter,” Phys. Lett. B 622, 199–206 (2005).

    Article  ADS  Google Scholar 

  50. A. E. Lobanov, “High energy neutrino spin light,” Phys. Lett. B 619, 136–144 (2005).

    Article  ADS  Google Scholar 

  51. A. V. Grigoriev, A. V. Lokhov, A. I. Studenikin, and A. I. Ternov, “The effect of plasmon mass on spin light of neutrino in dense matter,” Phys. Lett. B 718, 512–515 (2012).

    Article  ADS  Google Scholar 

  52. A. V. Borisov, A. S. Vshivtsev, V. Ch. Zhukovskii, and P. A. Eminov, “Photons and leptons in external fields at finite temperature and density,” Phys.-Usp. 40, 229–255 (1997).

    Article  ADS  Google Scholar 

  53. V. I. Ritus, “Quantum effects of the interaction of elementary particles with an intense electromagnetic field,” in Proceedings of the Lebedev Physical Institute: Quantum electrodynamics of phenomena in intense field, vol. 111 (Nauka, Moscow, 1979) pp. 5–151.

    Google Scholar 

  54. A. I. Nikishov, “Problems of external field in quantum electrodynamics,” in Proceedings of the Lebedev Physical Institute: Quantum electrodynamics of phenomena in intense field, vol. 111 (Nauka, Moscow, 1979) pp. 152–275.

    Google Scholar 

  55. V. I. Ritus, “Electron mass shift in intense field,” in Proceedings of the Lebedev Physical Institute: Problems of quantum electrodynamics of intense field, vol. 168 (Nauka, Moscow, 1986) pp. 52–120.

    Google Scholar 

  56. P. A. Eminov, A. I. Ternov, K. G. Levchenko, and V. A. Vshivtsev, “Radiative decay of a massive Dirac neutrino in neutron stars,” Rus. Phys. J. 43(6) 460 (2000).

    Article  Google Scholar 

  57. M. V. Chistyakov and N. V. Mikheev, “Radiative neutrino transition ν → νγ in strongly magnetized plasma,” Phys. Lett. B 467, 232–237 (1999).

    Article  ADS  Google Scholar 

  58. I. M. Ternov, V. Ch. Zhukovskii, P. A. Eminov, and P. G. Midodashvili, “Anomalous magnetic moment of the electron at finite temperature,” Sov. J. Nucl. Phys. 43, 485 (1986).

    Google Scholar 

  59. S. P. Gavrilov, D. M. Gitman, and E. S. Fradkin, “Quantum electrodynamics at finite temperature in presence of an external field violating the vacuum stability,” in Proceedings of the Lebedev Physical Institute: Quantum electrodynamics with unstable vacuum, vol. 193 (Nauka, Moscow, 1989) pp. 208–221.

    Google Scholar 

  60. I. M. Ternov, V. Ch. Zhukovsky, and A. V. Borisov, Quantum processes in a strong external field (Moscow Univ. Press, Moscow, 1989).

    Google Scholar 

  61. K. Nakamura, et al. (Particle Data Group), “Review of particle physics,” J. Phys. G 37, 075021 (2010).

    Article  ADS  Google Scholar 

  62. A. I. Ternov and P. A. Eminov, “Decay of a massive neutrino in magnetized electron gas,” Phys. Rev. D 87, 113001 (2013).

    Article  ADS  Google Scholar 

  63. A. I. Ternov and P. A. Eminov, “Radiative decay of massive neutrino in magnetized plasma,” J. Phys. G 29, 357–369 (2003).

    Article  ADS  Google Scholar 

  64. A. K. Harding and D. Lai, “Physics of strongly magnetized neutron stars,” Rep. Prog. Phys. 69, 2631–2708 (2006).

    Article  ADS  Google Scholar 

  65. H. P’erez Rojas and A. E. Shabad, “Polarization of relativistic electron and positron gas in a strong magnetic field. Propagation of electromagnetic waves,” Ann. Phys. (N.Y.) 121, 432–455 (1979).

    Article  ADS  Google Scholar 

  66. H. P’erez Rojas and A. E. Shabad, “Absorption and dispersion of electromagnetic eigenwaves of electronpositron plasma in a strong magnetic field,” Ann. Phys. (N.Y.) 138, 1–35 (1982).

    Article  ADS  Google Scholar 

  67. C. Giunti, “Phenomenology of sterile neutrinos,” J. Phys.: Conf. Series 408, 012009 (2013).

    ADS  Google Scholar 

  68. G. G. Raffelt and S. Zhou, “Supernova bound on keV-mass sterile neutrinos reexamined,” Phys. Rev. D 83, 093014 (2011).

    Article  ADS  Google Scholar 

  69. S. Ando and A. Kusenko, “Interactions of keV sterile neutrinos with matter,” Phys. Rev. D 81, 113006 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Ternov.

Additional information

Original Russian Text © A.I. Ternov, P.A. Eminov, 2014, published in Fizika Elementarnykh Chastits i Atomnogo Yadra, 2014, Vol. 45, No. 2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ternov, A.I., Eminov, P.A. Neutrino radiative decay in external field and medium. Phys. Part. Nuclei 45, 397–408 (2014). https://doi.org/10.1134/S1063779614020051

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779614020051

Keywords

Navigation