Advertisement

Physics of Particles and Nuclei

, Volume 45, Issue 2, pp 409–451 | Cite as

Beam dynamics in an ultra-low energy storage rings (review of existing facilities and feasibility studies for future experiments)

Article

Abstract

Storage rings operating at ultra-low energies and in particular electrostatic storage rings have proven to be invaluable tools for atomic and molecular physics. Due to the mass independence of the electrostatic rigidity, these machines are able to store a wide range of different particles, from light ions to heavy singly charged bio-molecules. However, earlier measurements showed strong limitations on beam intensity, fast decay of ion current, reduced life time etc. The nature of these effects was not fully understood. Also a large variety of experiments in future generation ultra-low energy storage and decelerator facilities including in-ring collision studies with a reaction microscope require a comprehensive investigation of the physical processes involved into the operation of such rings.

In this paper, we present review of non-linear and long term beam dynamics studies on example of the ELISA, AD Recycler, TSR and USR rings using the computer codes BETACOOL, OPERA-3D and MAD-X. The results from simulations were benchmarked against experimental data of beam losses in the ELISA storage ring. We showed that decay of beam intensity in ultra-low energy rings is mainly caused by ion losses on ring aperture due to multiple scattering on residual gas. Beam is lost on ring aperture due to small ring acceptance. Rate of beam losses increases at high intensities because of the intra-beam scattering effect adds to vacuum losses.

Detailed investigations into the ion kinetics under consideration of the effects from electron cooling and multiple scattering of the beam on a supersonic gas jet target have been carried out as well. The life time, equilibrium momentum spread and equilibrium lateral spread during collisions with this internal gas jet target were estimated. In addition, the results from experiments at the TSR ring, where low intensity beam of CF+ ions at 93 keV/u has been shrunk to extremely small dimensions have been reproduced. Based on these simulations, conditions for stable ring operation with extremely low emittance beam are presented. Finally, results from studies into the interaction of ions with a gas jet target at 3–30 keV energy range are summarized.

Keywords

Storage Ring Electron Cool Beam Emittance Momentum Spread Betatron Tune 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Zajfman et al., “Physics with electrostatic rings and traps,” J. Phys., B 37, 57–88 (2004).Google Scholar
  2. 2.
    J. Ulrich and C. Welsch, “Exploring sub-femtosecond correlated dynamics with an ultra-low energy electrostatic storage ring,” in Proc. of LEAP-2005 (Julich, Germany, 2005), p. 6.Google Scholar
  3. 3.
    C. P. Welsch et al., “Exploring sub-femtosecond correlated dynamics with an ultra-low energy electrostatic storage ring,” AIP Conf. Proc. 796, 266–271 (2005).ADSCrossRefGoogle Scholar
  4. 4.
    S. P. Möller, “ELISA—an electrostatic storage ring for atomic physics,” Nucl. Instr. Meth. 394(3), 281–286 (1997).ADSCrossRefGoogle Scholar
  5. 5.
    T. Tanabe et al., “An electrostatic storage ring for atomic and molecular science,” Nucl. Instr. Meth., A 482, 595 (2002).ADSCrossRefGoogle Scholar
  6. 6.
    S. Jinno et al., “TMU electrostatic ion storage ring designed for operation at liquid nitrogen temperature,” Nucl. Instr. Meth., A 532, 477 (2004).ADSCrossRefGoogle Scholar
  7. 7.
    K.-G. Rensfelt et al., “DESIREE—a double electrostatic storage ring,” Proc. EPAC (Lucerne, Switzerland, 2004), pp. 1425–1427.Google Scholar
  8. 8.
    K. E. Stiebing et al., “FLSR—the Frankfurt low energy storage ring,” Nucl. Instr. Meth., A 614(1), 10–16 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    D. Zajfman et al., “Physics with colder molecular ions: the Heidelberg Cryogenic Storage Ring CSR,” J. Phys. Conf. Ser. 4, 296 (2005).ADSCrossRefGoogle Scholar
  10. 10.
    M. A. El Ghazaly et al., “Layout of a novel electrostatic storage ring at KACST,” Appl. Math. Inform. Sci. 3(3), 309–319 (2009).Google Scholar
  11. 11.
    Yu. Senichev and S. P. Möller, “Beam Dynamics in Electrostatic Rings,” Proc. EPAC-2000, pp. 794–796.Google Scholar
  12. 12.
    Yu. Senichev, “The features of beam dynamics in the electrostatic storage rings,” FZJIKP Report (Juelich, 2000), p. 20.Google Scholar
  13. 13.
    S. Möller, “Design and first operation of the electrostatic storage ring, ELISA,” Proc. Europian Part. Accel. Conf. EPAC-1998, Stockholm, Sweeden, 1998, pp.73–77.Google Scholar
  14. 14.
    S. P. Möller. “Operational experience with the electrostatic storage ring, ELISA,” Proc. PAC-1999, pp. 2295–2297.Google Scholar
  15. 15.
    S. P. Möller et al., “Intensity limitations of the electrostatic storage ring ELISA,” Proc. EPAC-2000, pp. 788–790.Google Scholar
  16. 16.
  17. 17.
    S. R. Mane, “Orbital dynamics in a storage ring with electrostatic bending,” Nucl. Inst. Meth., A 596, 288–294 (2008).ADSCrossRefGoogle Scholar
  18. 18.
    F. Hinterberger, “Ion optics with electrostatic lenses,” in CERN School on small Accelerators, 2005, p. 24.Google Scholar
  19. 19.
    OPERA3D (TOSCA/SCALA), Computer code.Google Scholar
  20. 20.
    TRACE3D, Computer code.Google Scholar
  21. 21.
  22. 22.
    A. I. Papash and C. P. Welsch, “Simulations of space charge effects in low energy electrostatic storage rings,” Proc. IPAC-2010, Kyoto, Japan, pp. 1952–1954.Google Scholar
  23. 23.
    A. Gorda and A. Papash, “Nonlinear fields of cylindrical and spherical deflector and their effect on beam dynamics in the ELISA ring,” QUASAR group Design Note, June, 2010, p. 5.Google Scholar
  24. 24.
    A. Sidorin, A. Smirnov, I. Meshkov, et al., “BETACOOL program for simulation of beam dynamics in storage rings,” Nucl. Instr. Meth., A 558(1), 325–328 (2006).ADSCrossRefGoogle Scholar
  25. 25.
    BETACOOL Physics Guide, http://betacool.jinr.ru
  26. 26.
    I. Ben-Zvi et al., “Electron cooling of RHIC,” Proc. PAC-2005, Knoxville, USA, pp. 2741–2743.Google Scholar
  27. 27.
    A. V. Fedotov et al., “Cooling dynamics studies and scenarios for the RHIC cooler,” Proc. PAC-2005, pp. 4236–4238.Google Scholar
  28. 28.
    A. V. Fedotov et al., “Experimental studies of the magnetized friction force,” Phys. Rev., E 73(6) (2006).Google Scholar
  29. 29.
    T. Katayama et al., “MD simulation of beam ordering,” Nucl. Instr. Meth., A 532, 371–375 (2004).ADSCrossRefGoogle Scholar
  30. 30.
    I. Meshkov et al., “Numerical simulation of crystalline ion beams in storage ring,” Nucl. Instr. Meth., A 532, 376–381 (2004).ADSCrossRefGoogle Scholar
  31. 31.
    J. Dietrich et al., “Studies of beam dynamics in cooler rings,” Proc. COOL-2005 (FNAL, Galena, USA, 2005), pp. 154–158; Proc. AIP Conf. 821 (2005).Google Scholar
  32. 32.
    J. Dietrich, D. Prasuhn, et al., “Electron cooling of intense ion beam,” Proc. COOL-2005 (FNAL, Galena, USA), pp. 270–279; Proc. AIP Conf. 821 (2005).Google Scholar
  33. 33.
    A. Dolinskii et al., “Simulation results on cooling times and equilibrium parameters for antiproton beams at the HESR,” Proc.EPAC-2004, Lucerne, Switzerland, pp. 1972–1974.Google Scholar
  34. 34.
    A. V. Smirnov, M. Steck, et al., “Particle accumulation with a barrier bucket RF system,” Proc. COOL-2009 (IMP, Lanzhou, China, 2009), pp. 67–70.Google Scholar
  35. 35.
    B. Gålnander et al., “Cooling force measurements at CELSIUS,” Proc. COOL2005 (FNAL, Galena, USA), pp. 259–264, Proc. AIP Conf. 821 (2005).Google Scholar
  36. 36.
    A. Noda et al., “Crystalline beam simulations,” Proc. EPAC-2008, Genoa, Italy, pp. 1747–1749.Google Scholar
  37. 37.
    A. Papash, A. Smirnov, and C. Welsch, “Long term beam dynamics in ultra-low energy storage rings,” Proc. IPAC-2011, San-Sebastian, Spain, pp. 2166–2168.Google Scholar
  38. 38.
    A. V. Smirnov, A. I. Papash, and C. P. Welsch, “BETACOOL simulations of ion kinetics in the ultra-low energy electrostatic storage ring (USR),” Proc. COOL11, Alushta, Ukraine, 2011, p. 3.Google Scholar
  39. 39.
    H. Risken, “The Fokker-Planck equation,” in Methods of Solution and Applications (Springer, Ser. Ed., 1996), p. 472.Google Scholar
  40. 40.
    V. Avilov, “Calculation of electrostatic energy of planar lattices,” Solid State Comm. 44, 555–558 (1982).ADSCrossRefGoogle Scholar
  41. 41.
    F. Hinterberger and D. Prasuhn, “Analysis of internal target effects in light ion storage rings,” Nucl. Instr. Meth., A 279, 413–422 (1989).ADSCrossRefGoogle Scholar
  42. 42.
    E. Rutherford, “The Scattering of α and β particles by matter and the structure of the atom,” Philos. Mag. 6, 21 (1911).Google Scholar
  43. 43.
    G. Moliere, Z. Naturforsch. 2a, 133 (1947).ADSGoogle Scholar
  44. 44.
    L. H. Thomas, “The calculation of atomic fields,” Proc. Cambridge Phil. Soc. 23(5), 542–548 (1927).ADSCrossRefMATHGoogle Scholar
  45. 45.
    U. Fano, Phys. Rev. 93, 117 (1954).ADSCrossRefMATHGoogle Scholar
  46. 46.
    G. Moliere, Z. Naturforsch. 3a, 78 (1948).ADSGoogle Scholar
  47. 47.
    U. Fano, Ann. Rev. Nucl. Sci. 13, 1 (1963).ADSCrossRefGoogle Scholar
  48. 48.
    H. A. Bethe, Phys. Rev. 89, 1256 (1953).ADSCrossRefMATHMathSciNetGoogle Scholar
  49. 49.
    A. Piwinski, Proc. 9th Int. Conf. on High Energy Accelerators, 1974, p. 105.Google Scholar
  50. 50.
    M. Martini “Intra-beam scattering in the ACOOL-AA machines,” CERN PS/84-9 AA, Geneva, May 1984.Google Scholar
  51. 51.
    J. D. Bjorken and S. K. Mtingwa, “Intrabeam scattering,” Part. Accelerators 13, 115 (1983).Google Scholar
  52. 52.
    Jie Wei, “Evolution of hadron beams under intra-beam scattering,” Proc. of PAC’1993, p. 3651.Google Scholar
  53. 53.
    A. Piwinski, Proc. 9th Int. Conf. on High Energy Accelerators, 1974, p. 105.Google Scholar
  54. 54.
    A. Papash and C. P. Welsch, “An update of the USR lattice: towards a true multi-user experimental facility,” Proc. PAC09, Vancouver, BC, Canada, 2009, pp. 4335–4337.Google Scholar
  55. 55.
    M. Siggel-King, C. Welsch, A. Papash, and H. Knudsen, “Electrostatic ultra-low-energy antiproton recycling ring,” Hyperfine Interactions 199(1), 311–319 (2011).ADSCrossRefGoogle Scholar
  56. 56.
    J. Ullrich et al., “Kinematically complete experiments using cold target recoil ion momentum spectroscopy,” Nucl. Instr. Methods, B 124(2–3), 225–231 (1997).ADSGoogle Scholar
  57. 57.
    C. Welsch, A. Papash, et al., “Design of an antiproton recycler ring,” Proc. PAC2011, New York, pp. 1879–1881.Google Scholar
  58. 58.
    M. Siggel-King, C. Welsch, A. Papash, et al., “Design of a low energy ion beam facility,” Proc. IPAC2011, San-Sebastian, Spain, pp. 2019–2021.Google Scholar
  59. 59.
    H. Knudsen, private communication (2009).Google Scholar
  60. 60.
    A. Wolf et al., Proc. COOL05, pp. 473–477 (2005).Google Scholar
  61. 61.
    C. P. Welsch et al., “FLAIR—a facility for low-energy antiproton and ion research at GSI,” Hyperfine Interactions 172(1–3), 71–80 (2007).ADSGoogle Scholar
  62. 62.
    C. P. Welsch et al., “An ultra-low-energy storage ring at FLAIR,” Nucl. Instr. Meth., A 546, 405–417 (2005).ADSCrossRefGoogle Scholar
  63. 63.
    E. Jaeschke et al., “The Heidelberg test storage ring for heavy ions TSR,” Proc. EPAC-1988, Rome, Italy, pp. 365–367.Google Scholar
  64. 64.
    D. A. Orlov et al., “Electron cooling with photocathode electron beams applied to slow ions at TSR and CSR,” Proc. COOL2007, Bad Kreuznach, Germany, pp. 230–233.Google Scholar
  65. 65.
    D. A. Orlov et al., J. Phys., Conf. Ser. 4, 290 (2005).ADSCrossRefGoogle Scholar
  66. 66.
    D. A. Orlov et al., Appl. Phys. Lett. 78, 272 (2001).Google Scholar
  67. 67.
    G. Budker, Proc. Int. Symp. Electron and Positron Storage Rings, Saclay, 1966.Google Scholar
  68. 68.
    I. Meshkov, “Electron cooling: status and perspectives,” Phys. Part. Nucl. 25, 631 (1994).Google Scholar
  69. 69.
    V. Parkhomchuk, “New insights in the theory of electron cooling,” Nucl. Instr. Meth., A 441(9–17), 9 (2000).ADSCrossRefGoogle Scholar
  70. 70.
    G. Bisoffi et al., “The Heidelberg heavy ion cooler storage ring TSR,” Proc. PAC1989, pp. 49–53.Google Scholar
  71. 71.
    M. Steck et al., “The electron cooling device for the heavy ion storage ring TSR,” Proc. EPAC, 1988, pp. 1172–1174.Google Scholar
  72. 72.
    A. Papash and C. P. Welsch, “An update of the USR lattice: towards a true multi-user experimental facility,” Proc. PAC09, Vancouver, BC, Canada, 2009, pp. 4335–4337.Google Scholar
  73. 73.
    C. P. Welsch, A. I. Papash, et al., “Present Status of the USR Project,” Hyperfine Interactions Proceeding of LEAP-2008, Vienne, Austria, 2009, pp. 1–7.Google Scholar
  74. 74.
    C. P. Welsch, A. I. Papash, et al., “Ultra-low energy storage ring at FLAIR,” Hyperfine Interact, DOI 10.1007/s10751-011-0460-z, 2011, 11 p.Google Scholar
  75. 75.
    A. I. Papash and C. P. Welsch, “On the possibility of realizing shortest bunches in low-energy storage rings,” Phys. Part. Nucl. Lett. 6(3), 216–226 (2009).CrossRefGoogle Scholar
  76. 76.
    A. I. Papash and C. P. Welsch, “Realization of nanosecond antiproton pulses in the ultra-low energy storage ring,” Nucl. Instr. Meth., A 620(2–3), 128–141 (2010).ADSCrossRefGoogle Scholar
  77. 77.
    G. A. Karamisheva, A. I. Papash, and C. P. Welsch, “Study of slow and fast extraction for the ultra-low energy storage ring (USR),” Phys. Part. Nucl. Lett. 8(1), 50–60 (2011).CrossRefGoogle Scholar
  78. 78.
  79. 79.
    I. Meshkov et al., “Status of the LEPTA project”, Proc. RuPAC2008, Russia, 2008.Google Scholar
  80. 80.
    A. Gorda and A. Papash, Lattice considerations for the USR and the AD-REC electrostatic storage rings, QUASAR Group Design Note, April 2011, p. 10.Google Scholar
  81. 81.
    I. Meshkov, V. Parkhomchuk, D. Pestrikov, et al., “Ultimate possibilities of electron cooling,” Preprint 88-61 (Institute of Nuclear Physics, Novosibirsk, 1988).Google Scholar
  82. 82.
    I. Meshkov, A. Sidorin, and A. Smirnov, “Crystalline conditions of deeply cooled low intensity beams,” (private communication), 2008, p. 65.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • A. I. Papash
    • 1
    • 2
    • 3
  • A. V. Smirnov
    • 1
    • 2
  • C. P. Welsch
    • 4
    • 5
  1. 1.Joint Institute for Nuclear ResearchDubnaRussia
  2. 2.Max Planck Institute for Nuclear PhysicsHeidelbergGermany
  3. 3.Karlsruhe Institute of TechnologyKarlsruheGermany
  4. 4.University of LiverpoolLiverpoolUK
  5. 5.The Cockcroft Institute for Accelerator Science and TechnologyLiverpoolUK

Personalised recommendations