Skip to main content
Log in

Isotropic and anisotropic dark energy models

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

In this review we discuss the evolution of the universe filled with dark energy with or without perfect fluid. In doing so we consider a number of cosmological models, namely Bianchi type I, III, V, VI0, VI and FRW ones. For the anisotropic cosmological models we have used proportionality condition as an additional constrain. The exact solutions to the field equations in quadrature are found in case of a BVI model. It was found that the proportionality condition used here imposed severe restriction on the energy-momentum tensor, namely it leads to isotropic distribution of matter.

Anisotropic BVI0, BV, BIII and BIDE models with variable EoS parameter ω have been investigated by using a law of variation for the Hubble parameter. In this case the matter distribution remains anisotropic, though depending on the concrete model there appear different restrictions on the components of energy-momentum tensor. That is why we need an extra assumption such as variational a law for the Hubble parameter. It is observed that, at the early stage, the EoS parameter v is positive i.e. the universe was matter dominated at the early stage but at later time, the universe is evolving with negative values, i.e., the present epoch. DE model presents the dynamics of EoS parameter ω whose range is in good agreement with the acceptable range by the recent observations.

A spatially homogeneous and anisotropic locally rotationally symmetric Bianchi-I space time filled with perfect fluid and anisotropic DE possessing dynamical energy density is studied. In the derived model, the EoS parameter of DE (ω(de)) is obtained as time varying and it is evolving with negative sign which may be attributed to the current accelerated expansion of Universe. The distance modulus curve of derived model is in good agreement with SNLS type Ia supernovae for high redshift value which in turn implies that the derived model is physically realistic.

A system of two fluids within the scope of a spatially flat and isotropic FRW model is studied. The role of the two fluids, either minimally or directly coupled in the evolution of the dark energy parameter, has been investigated. In doing so we have used three different ansatzs regarding the scale factor that gives rise to a variable decelerating parameter. It is observed that, in the non-interacting case, both the open and flat universes can cross the phantom region whereas in the interacting case only the open universe can cross the phantom region. The stability and acceptability of the obtained solution are also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Akarsu and C. B. Kilinc, “LRS Bianchi type I models with anisotropic dark energy and constant deceleration parameter,” Gen. Relativ. Gravitation 42, 119 (2010).

    ADS  MATH  MathSciNet  Google Scholar 

  2. L. Amendola, F. Finelli, C. Burigana, and D. Carturan, “WMAP and the generalized Chaplygin gas,” J. Cosmology and Astroparticle Phys. 0307, 005 (2003).

    ADS  Google Scholar 

  3. L. Amendola, G. Camargo Campos, and R. Rosenfeld, “Consequences of dark matter-dark energy interaction on cosmological parameters derived from type Ia supernova data,” Phys. Rev. D 75, 083506 (2007).

    ADS  Google Scholar 

  4. H. Amirhashchi, A. Pradhan, and B. Saha, “Variable equation of state for Bianchi type-VI0 dark energy models,” Astrophys. Space Sci. 333, 295–303 (2011).

    ADS  Google Scholar 

  5. H. Amirhashchi, A. Pradhan, and B. Saha, “An interacting two-fluid scenario for dark energy in an FRW universe,” Chinese Phys. Lett. 3, 039801 (2011).

    Google Scholar 

  6. C. Armend’ariz-Pic’on and P. B. Greene, “Spinors, inflation, and non-singular cyclic cosmologies,” Gen. Relativ. Gravitation 35, 1637–1658 (2003).

    ADS  MathSciNet  Google Scholar 

  7. P. Astier et al., “The Supernova legacy survey: measurement of ΩM, ΩΛ, and w from the first year data set,” Astronomy and Astrophys. 447, 31 (2006).

    ADS  Google Scholar 

  8. R. Bali, A. Pradhan, and H. Amirhashchi, “Bianchi type VI 0 magnetized barotropic bulk viscous fluid massive string universe in general relativity,” Intern. J. Theor. Phys. 47, 2594–2604 (2008).

    MATH  MathSciNet  Google Scholar 

  9. J. D. Barrow, “Cosmological limits on slightly skew stress,” Phys. Rev. D. 1997. V. 55. P. 7451.

    ADS  Google Scholar 

  10. J. D. Barrow and R. Maartens, “Anisotropic stresses in inhomogeneous universe,” Phys. Rev. D 59, 043502 (1999).

    ADS  MathSciNet  Google Scholar 

  11. R. Bean and O. Dore, “Are Chaplygin gases serious contenders to the dark energy throne?” Phys. Rev. D 68, 023515 (2003).

    ADS  Google Scholar 

  12. L. M. Beca, P. P. Avelino, J. P. de Carvalho, and C. J. Martins, “The role of baryons in unified dark matter models,” Phys. Rev. D 67, 101301 (2003).

    ADS  Google Scholar 

  13. V. A. Belinskii, I. M. Khalatnikov, E. M. Lifshitz, “Oscillatory approach to a singular point in the relativistic cosmology,” Adv. Phys. 19, 525–573 (1970).

    ADS  Google Scholar 

  14. J. A. Belinchon, “Bianchi VI0 and III models: selfsimilar approach,” Classical Quantum Gravity 26, 175003 (2009).

    ADS  MathSciNet  Google Scholar 

  15. H. B. Benaoum, Accelerated universe from modified Chaplygin gas and tachyonic fluid, hep-th/0205140.

  16. C. L. Bennett et al., “First year Wilkinson microwave anisotropy probe (WMAP) observations: preliminary maps and basic results,” Astrophys. J. Suppliment Series 148, 1 (2003).

    ADS  Google Scholar 

  17. M. C. Bento, O. Bertolami, and A. A. Sen, “Generalized Chaplygin gas, accelerated expansion and dark energy-matter unification,” Phys. Rev. D 66, 043507 (2002).

    ADS  Google Scholar 

  18. M. C. Bento, O. Bertolami, and A. A. Sen, “Generalized Chaplygin gas and CMBR constraints,” Phys. Rev. D 67, 063003 (2003).

    ADS  MathSciNet  Google Scholar 

  19. M. C. Bento, O. Bertolami, and A. A. Sen, “WMAP constraints on the generalized Chaplygin gas model,” Phys. Lett. B 575, 172–180 (2003).

    ADS  Google Scholar 

  20. M. S. Berman, “A special law of variation for Hubble parameter,” Il Nuovo Cim. B 74, 182–186 (1983).

    ADS  Google Scholar 

  21. M. S. Berman and F. M. Gomide, “Cosmological models with constant deceleration parameter,” Gen. Relativ. Gravitation 20, 191–198 (1988).

    ADS  MathSciNet  Google Scholar 

  22. O. Bertolami, Challenges to the generalized Chaplygin gas cosmology, astro-ph/0403310.

  23. O. Bertolami, F. Gil Pedro, and M. Le Delliou, “Dark energy-dark matter interaction and putative violation of the equivalence principle from the Abell cluster A586,” Phys. Lett. B 654, 165–169 (2007).

    ADS  Google Scholar 

  24. M. Biesiada, W. Godlowski, and M. Szydlowski, “Generalized Chaplygin gas models tested with SNIa,” Astrophys. J. 622, 28–38 (2005), astroph/0403305.

    ADS  Google Scholar 

  25. N. Bilic, G. B. Tupper, and R. D. Viollier, “Unification of dark matter and dark energy: the inhomogeneous Chaplygin gas,” Phys. Lett. B 353, 17–21 (2002).

    ADS  Google Scholar 

  26. R. D. Blandford, M. Amin, E. A. Baltz, K. Mandel, and P. J. Marshall, Cosmokinetics (2004), arXiv:astroph/0408279.

    Google Scholar 

  27. M. Bordemann and J. Hoppe, “The dynamics of relativistic membranes I: reduction to 2-dimensional fluid dynamics,” Phys. Lett. B 317, 315–320 (1993).

    ADS  MathSciNet  Google Scholar 

  28. C. Brans and R. H. Dicke, “Mach’s principle and a relativistic theory of gravitation,” Phys. Rev. 124, 925–935 (1961).

    ADS  MATH  MathSciNet  Google Scholar 

  29. K. A. Bronnikov, “Static cyllindrically-symmetric Einstein-Maxwell fields,” in Problem of Theory of Gravity and Elemntary Particles (Atomizdat, Moscow, 1979), Issue 10, pp. 37–50.

    Google Scholar 

  30. Y. Cai, T. Qui, Y. Piao, M. Li, and X. Zhang, “Bouncing universe with quintom matter,” J. High Energy Phys. 0710, 071 (2007).

    ADS  Google Scholar 

  31. Y. Cai and J. Wang, “Dark energy model with spinor matter and its quintom scenario,” Classical Quantum Gravity 25, 165014 (2008).

    ADS  MathSciNet  Google Scholar 

  32. R. R. Cladwell, R. Dave, and P. J. Steinhardt, “Cosmological imprint of an energy component with general equation of state,” Phys. Rev. Lett. 80(8), 1582–1585 (1998).

    ADS  Google Scholar 

  33. R. R. Caldwell, “A phantom menace? Cosmological consequences of a dark energy component with supernegative equation of state,” Phys. Lett. B 545, 23–29 (2002).

    ADS  Google Scholar 

  34. R. Cardenas, T. Gonzalez, Y. Leiva, O. Martin, and I. Quiros, “Model of the universe including dark energy accounted for by both a quintessence field and a (negative) cosmological constant,” Phys. Rev. D 67, 083501 (2003).

    ADS  Google Scholar 

  35. V. H. Cardenas, “Tachyonic quintessential inflation,” Phys. Rev. D 73, 103512 (2006).

    ADS  Google Scholar 

  36. J. L. Cervantes-Cota, “Bianchi V inflation in the Brans-Dicke theory,” ArXiv: gr-qc/9912047v1 (1999).

    Google Scholar 

  37. S. A. Chaplygin, “On gas jet,” in Scientific notes of the Department of Physico-Math. Science of Moscow University, 1904, Issue 21, pp. 1–112.

    Google Scholar 

  38. M. Chevallier and D. Polarski, “Accelerating universes with dark matter,” Intern. J. Mod. Phys. D 10, 213 (2001).

    ADS  Google Scholar 

  39. P. Chauvet and J. L. Cervantes-Cota, “Isotropization of Bianchi type cosmological solutions in Brans-Dicke theory,” ArXiv: gr-qc/9502015v1 (1995).

    Google Scholar 

  40. T. Chiba and T. Nakamura, “The luminosity distance, the equation of state, and the geometry of the universe,” Prog. Theor. Phys. 100, 1077–1082 (1998).

    ADS  Google Scholar 

  41. L. P. Chimento and M. S. Mollerach, “Dirac equation in Bianchi I metrics,” Phys. Lett. A 121(1), 7–10 (1987).

    ADS  Google Scholar 

  42. L. P. Chimento, A. S. Jakubi, D. Pavon, and W. Zimdahl, “Interacting quintessence solution to the coincidence problem,” Phys. Rev. D 67, 083513 (2003).

    ADS  Google Scholar 

  43. A. Clocchiatti et al., “Hubble space telescope and ground-based observations of type Ia supernovae at Redshift 0.5: cosmological implications,” Astroph. J. 642, 1–21 (2006).

    ADS  Google Scholar 

  44. R. Colistete, J. C. Fabris, S. V. Goncalvez, and P. E. de Souza, “Dark energy, dark matter and the Chaplygin gas,” gr-qc/0210079.

  45. E. J. Copeland, M. R. Garousi, M. Sami, and S. Tsujikawa, “What is needed of a tachyon if it is to be the dark energy?” Phys. Rev. D 71, 043003 (2005).

    ADS  Google Scholar 

  46. M. P. Dabrowski, “Phantom dark energy and its cosmological consequences,” gr-qc/0701057v1.

  47. E. Davydov and A. T. Filippov, “Dilaton-scalar modles in context of generalized affine gravity theories: their properties and integrability,” ArXiv 1302.6969v1 [hepth] (2013).

    Google Scholar 

  48. A. Dev, D. Jain, and J. S. Alcaniz, “Constraints on Chaplygin quartessence from the CLASS gravitational lens statistics and supernova data,” Astronomy and Astrophys. 417, 847–852 (2004).

    ADS  Google Scholar 

  49. M. Le Delliou, O. Bertolami, and F. Gil Pedro, “Dark energy-dark matter interaction from the Abell cluster A586 and violation of the equivalence principle,” in AIP Conference Proceedings (2007), Vol. 957, pp. 421–424.

    ADS  Google Scholar 

  50. H. Dicke, “Dirac’s cosmology and Mach’s principle,” Nature (London) 192(4), 440–441 (1961).

    ADS  MATH  Google Scholar 

  51. J. M. Diego, W. Sliwa, J. Silk, X. Barcons, and W. Voges, “Cosmological constraints from the cluster contribution to the power spectrum of the soft X-ray background. New evidence for a low σ8,” Monthly Notice of Royal Astronomical Society 344, 951–964 (2003).

    ADS  Google Scholar 

  52. A. S. Eddington, Proceddings of Royal Society London, 1919, Ser. A, Vol. 99, p. 742.

  53. A. S. Eddington, Math. Theory of Relativity (Cambridge, 1923).

    Google Scholar 

  54. A. Einstein, “Kosmologische Betrachtungen zur allgemeinen Relativitüatstheorie,” Sitzungsber. Preuss. Acad. Wiss. 1, 142–152 (1917).

    Google Scholar 

  55. A. Einstein, “Spielen die Gravitationsfelder im Aufbau der materiellen Elementarteilchen eine wesentliche Rolle?” Sitzungsber. Preuss. Acad. Wiss. 1, 349–356 (1919).

    Google Scholar 

  56. A. Einstein, Physikalisch-mathematische Klasse (Sitzungsber. Preuss. Acad. Wiss., 1923), Vol. 2, pp. 32–38, 76–77, 137–140.

    Google Scholar 

  57. A. Einstein, “Relativitüats theorie in mathematischer Behandlung,” in Appendix to the Book: Eddington A.S. (Springer, Berlin, 1925).

    Google Scholar 

  58. J. C. Fabris, S. V. Goncalvez, and P. E. de Souza, “Density perturbations in a Universe dominated by the Chaplygin gas,” Gen. Relativ. Gravitation 34, 53–63 (2002).

    MATH  Google Scholar 

  59. J. C. Fabris, S. V. Goncalvez, and P. E. de Souza, “Mass power spectrum in a universe dominated by the Chaplygin gas,” Gen. Relativ. Gravitation 34, 2111–2126 (2002).

    ADS  MATH  Google Scholar 

  60. S. Fay, “Sufficient conditions for curvature invariants to avoid divergences in hyperextended scalar-tensor theory for Bianchi models,” Classical Quantum Gravity 17, 2663–2673 (2000).

    ADS  MATH  MathSciNet  Google Scholar 

  61. S. Fay, “Generalized scalar-tensor theory in the Bianchi type I model,” Gen. Relativ. Gravitation 32, 187–202 (2000).

    ADS  MATH  MathSciNet  Google Scholar 

  62. G. Felder, A. Frolov, L. Kofman, and A. Linde, “Cosmology with negative potentials,” Phys. Rev. D 66, 023507 (2002).

    ADS  MathSciNet  Google Scholar 

  63. B. Feng, X. Wang, and X. Zhang, “Dark energy constraints from the cosmic age and supernova,” Phys. Lett. B 607, 35–41 (2005).

    ADS  Google Scholar 

  64. M. Fierz, “Zur Fermischen theorie des β-Zerfalls,” Zeitschrift Phys. A Hadrons and Nuclei 104, 553–565 (1937).

    Google Scholar 

  65. A. T. Filippov, “The Weyl-Eddington-Einstein affine gravity in the conrext of modern cosmology,” Theor. and Math. Phys. 163(3), 430–448 (2010).

    Google Scholar 

  66. A. T. Filippov, “Some unusual dimension reductions of gravity: geometric potentials, separation of variables, and static-cosmological duality,” ArXiv 060527v2 [hep-th] (2006).

    Google Scholar 

  67. A. T. Filippov, “Unified description of cosmological and static solutions in affine generalized theories of gravity: vecton-scalarton duality and its applications,” ArXiv 1302.6372v2 [hep-th] (2013).

    Google Scholar 

  68. A. A. Friedmann, “Uber die Krummung des Raumes,” Z. Phys. 10, 377–386 (1922).

    ADS  Google Scholar 

  69. A. A. Friedmann, “Uber die Moglichkeit einer Welt mit konstanter negativer Krummung des Raumes,” Z. Phys. 21, 326–332 (1924).

    ADS  MATH  MathSciNet  Google Scholar 

  70. R. Gannouji, D. Polarski, A. Ranquet, and A. A. Starobinsky, “Scalar-tensor dark energy models,” arXiv: astro-phys/0701650v1 (2007).

    Google Scholar 

  71. R. Gannouji, D. Polarski, A. Ranquet, and A. A. Starobinsky, “Scalar-tensor models of normal and phantom dark energy,” J. Cosmology and Astroparticle Phys., JCAP 09, 016 (2006).

    ADS  Google Scholar 

  72. C. Germani and C. G. Tsagas, “Magnetized Tolman-Bondi collapse,” Phys. Rev. D 73, 064010 (2006).

    ADS  MathSciNet  Google Scholar 

  73. G. W. Gibbons, “Pulse propagation in Born-Infeld theory, the world volume equivalence principle and the Hagedorn-like equation of state of the Chaplygin gas,” Gravitation and Cosmology 8, 2–6 (2002).

    ADS  MATH  MathSciNet  Google Scholar 

  74. T. Gonzalez and I. Quiros, “Exact models with nonminimal interaction between dark matter and (either phantom or quintessence) dark energy,” arXiv:grqc/0707.2089v1.

  75. V. Gorini, A. Kamenshchik, and U. Moschella, “Can the Chaplygin gas be a plausible model for dark energy?” Phys. Rev. D 67, 063509 (2003).

    ADS  Google Scholar 

  76. V. Gorini, A. Kamenshchik, U. Moschella, and V. Pasquier, “The Chaplygin gas as a model for dark energy,” gr-qc/0403062.

  77. Z. K. Guo, N. Ohta, and S. Tsujikawa, “Probing the coupling between dark components of the universe,” Phys. Rev. D 76, 023508 (2007).

    ADS  Google Scholar 

  78. A. Guth, “Inflationary universe: a possible solution to the horizon and flatness problems,” Phys. Rev. D 23, 347–356 (1981).

    ADS  Google Scholar 

  79. M. Hassaine and P. A. Horvathy, “Chaplygin gas with field-dependent Poincare symmetry,” Lett. in Math. Phys. 57, 33–40 (2001).

    MATH  MathSciNet  Google Scholar 

  80. M. Hassaine, “Supersymmetric Chaplygin gas,” Phys. Lett. A 290, 157–164 (2001).

    ADS  MATH  MathSciNet  Google Scholar 

  81. S. W. Hawking and R. J. Taylor, “Helium production in anisotropic Big Bang universe,” Nature 299, 1278 (1966).

    ADS  Google Scholar 

  82. G. Hinshaw, et al., “Five-year Wilkinson microwave anisotropy probe (WMAP) observations: data processing, sky maps, and basic results,” Astrophys. J. Suppliment Series 180, 225–245 (2009).

    ADS  Google Scholar 

  83. Z. Horvath and Z. Kovacs, “Canonical theory of the Kantowski-Sachs cosmological models,” Astronomical Deparment of Eotvos University (PADEU) 17, 229–234 (2006).

    ADS  Google Scholar 

  84. B. L. Hu and L. Parker, “Anisotropy damping through quantum effects in the early universe,” Phys. Rev.. D 17, 933–945 (1978).

    ADS  Google Scholar 

  85. B. L. Hu, “Gravitational waves in a Bianchi type-I universe,” Phys. Rev. D 18(4), 969–982 (1978).

    ADS  MathSciNet  Google Scholar 

  86. D. Huterer and M. S. Turner, “Probing dark energy: methods and strategies,” Phys. Rev. D 64, 123527 (2001).

    ADS  Google Scholar 

  87. J. Ibáñez, R. J. van der Hoogen, and A. A. Coley,, “Isotropization of scalar field Bianchi models with an exponential potential,” Phys. Rev. D 51, 928–930 (1995).

    ADS  MathSciNet  Google Scholar 

  88. R. Jackiw, A particle field theorist’s lectures on supersymmetric, Non-Abelian fluid mechanics and d-Branes, physics/0010042.

  89. K. C. Jacobs, “Spatially homogeneous and Euclidean cosmological models with shear,” The Astrophys. J. 153(2), 661–678 (1968).

    ADS  Google Scholar 

  90. P. Jordan, “Zum gegenwartigen Stand der Diracschen kosmologischen Hypothesen,” Zeitschrift Phys. A Hadrons and Nuclei 157, 112–121 (1959).

    Google Scholar 

  91. A. Yu. Kamenshchik, U. Moschella, and V. Pasquier, “An alternative to quintessence,” Phys. Lett. B 511(2–4), 265–268 (2001).

    ADS  MATH  Google Scholar 

  92. R. Kantowski and R. K. Sachs, “Some spatially homogeneous anisotropic relativistic cosmological models,” J. Math. Phys. 7, 443–446 (1966).

    ADS  MathSciNet  Google Scholar 

  93. R. K. Knop et al., “New constraints on ΩM, ΩΛ, and w from an independent set of eleven high-redshift supernovae observed with HST,” Astrophys. J. 598, 102 (2003).

    ADS  Google Scholar 

  94. E. Komatsu et al., “Five-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation,” Astrophys. J. Suppl. Series 180, 330–376 (2009).

    ADS  Google Scholar 

  95. V. G. Krechet, M. L. Fil’chenkov, and G. N. Shikin, “Equivalence between the descriptions of cosmological models using a spinor field and a perfect fluid,” Gravitation and Cosmology 143(55), 292–294 (2008).

    ADS  MATH  MathSciNet  Google Scholar 

  96. G. M. Kremer, “Irreversible processes in a universe modelled as a mixture of a Chaplygin gas and radiation,” Gen. Relativ. Gravitation 35, 1459–1466 (2003).

    ADS  MATH  Google Scholar 

  97. J. Kristian and R. K. Sachs, “Observations in cosmology,” Astrophys. J. 143, 379–399 (1966).

    ADS  MathSciNet  Google Scholar 

  98. S. Kumar and A. K. Yadav, “Some Bianchi type-V models of accelerating universe with dark energy,” Mod. Phys. Lett. A 26, 647 (2011).

    ADS  MATH  Google Scholar 

  99. G. H. Lemaitre, “l’Univers en expansion,” Ann. Soc. Sci. Brux. A 53, 51–85 (1933).

    Google Scholar 

  100. E. V. Linder, “Exploring the expansion history of the universe, Phys. Rev. Lett. 90, 91301 (2003).

    ADS  Google Scholar 

  101. E. V. Linder, “On oscillating dark energy,” Astroparticle Phys. 25(2), 167–171 (2006).

    ADS  MathSciNet  Google Scholar 

  102. E. V. Linder, “The dynamics of quintessence, the quintessence of dynamics,” Gen. Relativ. Gravitation 40, 329–356 (2008).

    ADS  MATH  MathSciNet  Google Scholar 

  103. V. N. Lukas and A. A. Starobinskii, “Isotropization of cosmological expansion due to particle creation,” J. Exper. and Theor. Phys. 66, 1515–1527 (1974).

    Google Scholar 

  104. M. A. H. MacCallum, “Anisotropic and inhomogeneous cosmologies,” gr-qc/9212914 (1992).

    Google Scholar 

  105. T. Multamaki, M. Manera, and E. Gaztanaga, “Large scale structure and the generalised Chaplygin gas as dark energy,” Phys. Rev. D 69, 023004 (2004).

    ADS  Google Scholar 

  106. S. Nojiri and S. D. Odintsov, “The oscillating dark energy: future singularity and coincidence problem,” Phys. Lett. B 637(3), 139–148 (2006).

    ADS  Google Scholar 

  107. N. Ogawa, “A note on classical solution of Chaplygin gas as D-brane,” Phys. Rev. D 62, 085023 (2000).

    ADS  Google Scholar 

  108. G. Olivares, F. Atrio-Barandela, and D. Pavon, “Observational constraints on interacting quintessence models,” Phys. Rev. D 71, 063523 (2005).

    ADS  Google Scholar 

  109. T. Padmanabhan, “Cosmological constant-the weight of the vacuum,” Phys. Rep. 380(5–6), 235–320 (2003).

    ADS  MATH  MathSciNet  Google Scholar 

  110. D. Pavon, S. Sen, and W. Zimdahl, “CMB constraints on interacting cosmological models,” J. Cosmology and Astroparticle Phys. 0405, 009 (2004).

    ADS  Google Scholar 

  111. D. Pavon and B. Wang, “Le Chtelier-Braun principle in cosmological physics,” Gen. Relativ. Gravitation 41, 1–5 (2009).

    ADS  MATH  MathSciNet  Google Scholar 

  112. S. Perlmutter et al., “Discovery of a supernova exploision at half the age of the universe,” Nature 391, 51–54 (1998).

    ADS  Google Scholar 

  113. S. Perlmutter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro, S. Deustua, S. Fabbro, A. Goobar, D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, J. C. Lee, N. J. Nunes, R. Pain, C. R. Pennypacker, R. Quimby, C. Lidman, R. S. Ellis, M. Irwin, R. G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B. J. Boyle, A. V. Filippenko, T. Matheson, A. S. Fruchter, N. Panagia, H. J. M. Newberg, W. J. Couch, and The Supernova Cosmology Project, “Measurements of Ω and Λ from 42 high-redshift supernovae,” Astrophys. J. 517, 565–586 (1999).

    ADS  Google Scholar 

  114. A. Pradhan, H. Amirhashchi, and B. Saha, “Bianchi type-I anisotropic dark energy model with constant deceleration parameter,” Intern. J. Theor. Phys. 50, 2923–2938 (2011).

    MATH  Google Scholar 

  115. A. Pradhan, H. Amirhashchi, and B. Saha, “An interacting and non-interacting two-fluid scenario for dark energy in FRW universe with constant deceleration parameter,” Astropysics and Space Science 333, 343–350 (2011).

    ADS  Google Scholar 

  116. A. Pradhan, H. Amirhashchi, and H. Zainuddin, “Exact solution of perfect fluid massive string cosmology in Bianchi type III space-time with decaying vacuum energy density” Astrophys. and Space Science 331, 679–687 (2011).

    ADS  Google Scholar 

  117. A. Pradhan, S. Lata, and H. Amirhashchi, “Massive string cosmology in Bianchi type III space-time with electromagnetic field,” Communications in Theor. Phys. 54, 950 (2010).

    ADS  MATH  Google Scholar 

  118. D. Rapetti, S. W. Allen, M. A. Amin, and R. D. Blandford, “A kinematical approach to dark energy studies,” Monthly Notice of Royal Astronomical Socety 375, 1510–1520 (2007).

    ADS  Google Scholar 

  119. M. O. Ribas, F. P. Devecchi, and G. M. Kremer, “Fermions as sources of accelerated regimes in cosmology,” Phys. Rev. D 72, 123502 (2005).

    ADS  Google Scholar 

  120. Adam G. Riess, Alexei V. Filippenko, Peter Challis, Alejandro Clocchiattia, Alan Diercks, Peter M. Garnavich, Ron L. Gilliland, Craig J. Hogan, Saurabh Jha, Robert P. Kirshner, B. Leibundgut, M. M. Phillips, David Reiss, Brian P. Schmidt, Robert A. Schommer, R. Chris Smith, J. Spyromilio, Christopher Stubbs, Nicholas B. Suntzeff, and John Tonry, “Observational evidence from supernovae for an accelerating universe and a cosmological constant,” Astronomical J. 116, 1009–1038 (1998).

    ADS  Google Scholar 

  121. A. G. Riess et al., “Type Ia supernova discoveries at z-1 from the Hubble space telescope: evidence for past deceleration and constraints on dark energy evolution,” Astrophys. J. 607, 665–687 (2004).

    ADS  Google Scholar 

  122. H. P. Robertson, “Kinematics and world-structure,” Astrophys. J. 82, 284 (1935).

    ADS  Google Scholar 

  123. H. P. Robertson, “Kinematics and world-structure II,” Astrophys. J. 83, 187 (1936).

    ADS  Google Scholar 

  124. H. P. Robertson, “Kinematics and world-structure III,” Astrophys. J. 83, 257 (1936).

    ADS  MATH  Google Scholar 

  125. C. Rubano, P. Scudellaro, and E. Piedipalumbo, “Oscillating dark energy: a possible solution to the problem of eternal acceleration,” Phys. Rev. D 68, 123501 (2003).

    ADS  Google Scholar 

  126. Yu. P. Rybakov, B. Saha, and G. N. Shikin, “Solitons of nonlinear scalar electrodynamics in general relativity,” Intern. J. Theor. Phys. 36(6), 1475–1494 (1997).

    MATH  MathSciNet  Google Scholar 

  127. B. Saha, “Dirac spinor in Bianchi-I universe with time dependent gravitational and cosmological constants,” Mod. Phys. Lett. A 16(20), 1287–1296 (2001).

    ADS  MATH  Google Scholar 

  128. B. Saha, “Spinor field in Bianchi type-I universe: regular solutions,” Phys. Rev. D 64, 123501 (2001).

    ADS  MathSciNet  Google Scholar 

  129. B. Saha, “Nonlinear spinor field in cosmology,” Phys. Rev. D 69, 124006 (2004).

    ADS  MathSciNet  Google Scholar 

  130. B. Saha, “Spinor field with induced nonlinearity in Bianchi VI cosmology: exact and numerical solutions,” Gravitation and Cosmology 16(2), 160–167 (2010).

    ADS  MATH  MathSciNet  Google Scholar 

  131. B. Saha, “Spinor fields in Bianchi type-I universe,” Phys. Part. Nucl. 37,suppl. 1, S13–S44 (2006).

    Google Scholar 

  132. B. Saha, “Bianchi type Universe with viscous fluid,” Mod. Phys. Lett. A 20(28), 2127–2143 (2005).

    ADS  MATH  Google Scholar 

  133. B. Saha, “Nonlinear spinor field in Bianchi type-I universe filled with viscous fluid: some special solutions,” Romanian Rep. in Phys. 57(1), 7–24 (2005).

    Google Scholar 

  134. B. Saha, “Nonlinear spinor field in Bianchi type-I universe filled with viscous fluid: numerical solutions,” Astrophys. Space Sci. 312, 3–11 (2007).

    ADS  MATH  Google Scholar 

  135. B. Saha, “Interacting spinor and scalar fields in Bianchi type-I universe filled with viscous fluid: exact and numerical solutions,” Gravitation and Cosmology 25(4), 353–361 (2009).

    ADS  Google Scholar 

  136. B. Saha, “Anisotropic cosmological models with perfect fluid and dark energy,” Chinese J. Phys. 43(6), 1035–1043 (2005).

    ADS  Google Scholar 

  137. B. Saha, “Anisotropic cosmological models with a perfect fluid and a Λ term,” Astrophys. Space Sci. 302, 83–91 (2006).

    ADS  MATH  Google Scholar 

  138. B. Saha, “Anisotropic cosmological models with perfect fluid and dark energy reexamined” 45(5), 983–995 (2006).

    MATH  Google Scholar 

  139. B. Saha, “Spinor field and accelerated regimes in cosmology,” Gravitation and Cosmology 122–3 (46–47), 215–218 (2006).

    ADS  MATH  Google Scholar 

  140. B. Saha, “Nonlinear spinor field in Bianchi type-I cosmology: inflation, isotropization, and late time acceleration,” Phys. Rev. D 74, 124030 (2006).

    ADS  MathSciNet  Google Scholar 

  141. B. Saha, “Nonlinear spinor field in Bianchi type-I cosmology: accelerated regimes,” Romanian Rep. Phys. 59(2), 649–660 (2007).

    Google Scholar 

  142. B. Saha, “Early inflation, isotropization and late-time acceleration of a Bianchi type-I universe,” Phys. Part. Nucl. 40, 656–673 (2009).

    Google Scholar 

  143. B. Saha, “Spinor model of a perfect fluid,” Central European J. Phys. 8, 920–923 (2010).

    ADS  Google Scholar 

  144. B. Saha, “Spinor model of a perfect fluid: examples,” Romanian Rep. Phys. 62, 209–216 (2010).

    Google Scholar 

  145. B. Saha, “Spinor model of a perfect fluid and their applications in Bianchi type-I and FRW models,” Astrophys. Space Sci. 331, 243–255 (2011).

    ADS  MATH  Google Scholar 

  146. B. Saha, “Nonlinear spinor fields and its role in cosmology,” Intern. J. Theor. Phys. 51, 1812–1837 (2012).

    MATH  Google Scholar 

  147. B. Saha, “Bianchi type-II cosmological model: some remarks,” Central European J. Phys. 9, 939–941 (2011) (DOI: 10.2474/s11534-011-0017-4).

    ADS  Google Scholar 

  148. B. Saha, “Some remarks on Bianchi type-II, VIII and IX models,” Gravitation and Cosmology 19(1), 65–69 (2013).

    ADS  MATH  MathSciNet  Google Scholar 

  149. B. Saha, “Bianchi type-VI anisotropic dark energy model with varying EoS parameter,” ArXiv: 1209.6029 [gr-qc] (2012).

    Google Scholar 

  150. B. Saha, “Bianchi type-V dark energy model with varying EoS parameter,” Intern. J. Theor. Phys. 52, 1314–1325 (2013).

    MATH  Google Scholar 

  151. B. Saha, “Some problems of modern cosmology and spinor field,” Bulletin of PFUR. Series Mathematics, Information Sciences, Physics No. 4, 170–180 (2012).

    Google Scholar 

  152. B. Saha, “Nonlinear spinor fields in Bianchi type-I spacetime reexamined,” ArXiv: 1302.1354 [gr-qc] (2013).

    Google Scholar 

  153. B. Saha, H. Amirhashchi, and A. Pradhan, “Two-fluid scenarion for dark energy models in an FRW universe-revisited,” Astrophys. Space Sci. 342, 257–267 (2012).

    ADS  Google Scholar 

  154. B. Saha and T. Boyadjiev, “Bianchi type-I cosmology with scalar and spinor fields,” Phys. Rev. D 69, 124010 (2004).

    ADS  MathSciNet  Google Scholar 

  155. B. Saha and V. Rikhvitsky, “Bianchi type I universe with viscous fluid and a Λ term: a qualitative analysis,” Physica D 219, 168–176 (2006).

    ADS  MATH  MathSciNet  Google Scholar 

  156. B. Saha and V. Rikhvitsky, “Anisotropic cosmological models with spinor field and viscous fluid in presence of a Λ term: qualitative solutions,” J. Phys. A: Math. and Theor. 40, 14011–14027 (2007).

    ADS  MATH  MathSciNet  Google Scholar 

  157. B. Saha and V. Rikhvitsky, “Anisotropic cosmological models with spinor and scalar fields and viscous fluid in presence of a Λ term: qualitative solutions,” J. Math. Phys. 49, 112502 (2008).

    ADS  MathSciNet  Google Scholar 

  158. B. Saha and V. S. Rikhvitsky, “Nonlinear spinor fields in anisotropic universe filled with viscous fluid: exact solutions and qualitative analysis,” Phys. Part. Nucl. 40, 612–655 (2009).

    Google Scholar 

  159. B. Saha and G. N. Shikin, “Nonlinear spinor field in Bianchi type-I universe filled with perfect fluid: exact self-consistent solutions,” J. Math. Phys. 38(10), 5305–5318 (1997).

    ADS  MATH  MathSciNet  Google Scholar 

  160. B. Saha and G. N. Shikin, “Interacting spinor and scalar fields in Bianchi type I universe filled with perfect fluid: exact self-consistent solutions,” Gen. Relativ. Gravitation 29(9), 1099–1112 (1997).

    ADS  MATH  MathSciNet  Google Scholar 

  161. B. Saha and G. N. Shikin, “On the role of Λ-term in the evolution of Bianchi-I cosmological model with nonlinear spinor field,” PFU Rep.: Physics 8, 17–20 (2000).

    Google Scholar 

  162. B. Saha and G. N. Shikin, “Nonlinear spinor field: plane-symmetric solutions,” J. Theor., Math. Comp. Phys. 5(1), 54–71 (2002).

    Google Scholar 

  163. B. Saha and G. N. Shikin, “Plane-symmetric solitons of spinor and scalar fields,” Chezkoslovak J. Phys. 54(6), 597–620 (2004).

    ADS  MathSciNet  Google Scholar 

  164. B. Saha and G. N. Shikin, “Static plane-symmetric nonlinear spinor and scalar fields in GR,” Intern. J. Theor. Phys. 44(9), 1459–1494 (2005).

    MATH  MathSciNet  Google Scholar 

  165. B. Saha and M. Visinescu, “Bianchi type-VI model with cosmic strings in the presence of a magnetic field,” Romainan J. Phys. 55, 10641074 (2010).

    MathSciNet  Google Scholar 

  166. B. Saha and A. K. Yadav, “Dark energy model with variable q and ω in LRS Bianchi-II space-time,” Astrophys. Space Sci. (2012) (in press).

    Google Scholar 

  167. V. Sahni, “Dark matter and dark energy,” Lecture Notes Phys. 653, 141–180, (2004) astro-ph/0403324.

    ADS  Google Scholar 

  168. V. Sahni and A. A. Starobinsky, “The case for a positive cosmological Λ term,” Intern. J. Mod. Phys. D 9(4), 373–443 (2000).

    ADS  Google Scholar 

  169. V. Sahni, T. D. Saini, A. A. Starobinsky, and U. Alam, “Statefinder-a new geometrical diagnostic of dark energy,” JETP Lett. 77, 243–248 (2003).

    Google Scholar 

  170. H. Sandvik, M. Tegmark, M. Zaldarriaga, and I. Waga, “The end of unified dark matter?” astro-ph/0212114.

  171. A. Sen, “Rolling tachyon,” J. High Energy Phys. 0204, 048 (2002).

    ADS  Google Scholar 

  172. A. Sen, “Field theory of tachyon matter,” Mod. Phys. Lett. A 17, 1797–1804 (2002).

    ADS  MATH  Google Scholar 

  173. M. R. Setare, J. Zhang, and X. Zhang, “Statefinder diagnosis in a non-flat universe and the holographic model of dark energy,” J. Cosmology and Astroparticle Phys. 0703, 007 (2007).

    ADS  Google Scholar 

  174. Y. Shao and Y. Gui, “Statefinder parameters for tachyon dark energy model,” arXiv:gr-qc/0703111v1.

  175. Y. Shao, Y. X. Gui, and W. Wang, “Parametrization of tachyon field,” Mod. Phys. Lett. A 22, 1175–1181 (2007).

    ADS  MATH  Google Scholar 

  176. G. N. Shikin, “Interacting scaler and electromagnetic fields: static cyllindrically-symmetric solutions with gravitation,” in Problem of Theory of Gravity and Elemntary Particles (Atomizdat, Moscow, 1984) Issue 14, pp. 85–97.

    Google Scholar 

  177. T. Singh and A. K. Agrawal, “Homogeneous anisotropic cosmological models with variable gravitational and cosmological constants,” Intern. J. Theor. Phys. 32(6), 1041–1059 (1993).

    MathSciNet  Google Scholar 

  178. J. Socorro and E. R. Medina, “Supersymmetric quantum mechanics for Bianchi class A models,” Phys. Rev. D 61, 087702 (2000).

    ADS  MathSciNet  Google Scholar 

  179. R. C. de Souza and G. M. Kremer, “Noether symmetry for non-minimally coupled fermion fields,” Classical Quantum Gravity 25, 225006 (2008).

    ADS  MathSciNet  Google Scholar 

  180. S. K. Srivastava, “Tachyon as a dark energy,” arXiv:grqc/0409074v4.

  181. P. J. Steinhardt and N. Turok, “Cosmic evolution in a cyclic universe,” Phys. Rev. D 65, 126003 (2002).

    ADS  MathSciNet  Google Scholar 

  182. M. Szydlowski and W. Czja, “Stability of FRW cosmology with generalized Chaplygin gas,” Phys. Rev. D 69, 023506 (2004).

    ADS  Google Scholar 

  183. A. H. Taub, “Empty space-times admitting a three parameter group of motions,” Ann. of Mathematics 53(3), 472–490 (1951).

    ADS  MATH  MathSciNet  Google Scholar 

  184. A. H. Taub, “Isentropic hydrodynamics in plane symmetric space-times,” Phys. Rev. 103, 454–467 (1956).

    ADS  MATH  MathSciNet  Google Scholar 

  185. M. Tegmark et al., “The 3D power spectrum of galaxies from the SDSS,” Astrophys. Journal 606, 702–740 (2004).

    ADS  Google Scholar 

  186. M. Tegmark et al., “Cosmological parameters from SDSS and WMAP,” Phys. Rev. D 69, 103501 (2004).

    ADS  Google Scholar 

  187. K. S. Thorne, “Effect of a primordial magnetic field on the dynamics of the universe,” Bull. American Phys. Society 11, 340 (1966).

    Google Scholar 

  188. K. S. Thorne, “Primordial element formation, primordial magnetic fields, and the isotropy of the universe,” The Astrophys. Journal 148(1), 51–68 (1967).

    ADS  MathSciNet  Google Scholar 

  189. J. L. Tonry et al., “Cosmological results from high-z supernovae,” Astrophys. Journal 594, 1–24 (2003).

    ADS  Google Scholar 

  190. B. Vakili and H. R. Sepangi, “Time reparameterization in Bianchi type I spinor cosmology,” Ann. Phys. 323, 548565 (2008).

    MathSciNet  Google Scholar 

  191. R. G. Vishwakarma, “A study of angular size-redshift relation for models in which ? decays as the energy density,” Classical Quantum Gravity 17, 3833 (2000).

    ADS  MATH  Google Scholar 

  192. M. Visser, “Jerk, snap and the cosmological equation of state,” Classical Quantum Gravity 21, 2603 (2004).

    ADS  MATH  MathSciNet  Google Scholar 

  193. M. Visser, “Cosmography: cosmology without the Einstein equations,” Gen. Relativ. Gravitation 37, 1541–1548 (2005).

    ADS  MATH  MathSciNet  Google Scholar 

  194. A. G. Walker, “On Milne’s theory of world-structure,” in Proceedings of the London Math. Society (1937), Vol. 42, pp. 90–127.

    Google Scholar 

  195. M. Weaver, “Big-Bang model without singularities,” Classical Quantum Gravity 17, 421–434 (2000).

    ADS  MATH  MathSciNet  Google Scholar 

  196. M. Weaver, “Dynamics of magnetic Bianchi VI0 cosmologies,” Classical Quantum Gravity 17, 421 (2009).

    ADS  MathSciNet  Google Scholar 

  197. S. Weinberg, “The cosmological constant problem,” Rev. Mod. Phys. 61, 1–23 (1989).

    ADS  MATH  MathSciNet  Google Scholar 

  198. J. Weller and A. Albrecht, “Future supernovae observations as a probe of dark energy,” Phys. Rev. D 65, 103512 (2002).

    ADS  Google Scholar 

  199. H. Weyl, “Raum-Zeit Materie” (1918) (English Translation 1950).

    Google Scholar 

  200. C. M. Will, Theory and Experiment in Gravitational Phys. (Cambridge University Press, 2001); arXiv:gr-qc/0103036.

    Google Scholar 

  201. A. K. Yadav and B. Saha, “LRS Bianchi-I anisotropic cosmological model with dominance dark energy,” Astrophys. Space Sci. 337, 759–765 (2012).

    ADS  MATH  Google Scholar 

  202. A. K. Yadav and L. Yadav, “Bianchi type III anisotropic dark energy models with constant deceleration parameter, Intern. J. Theor. Phys. 50, 218–227 (2011).

    MATH  Google Scholar 

  203. A. K. Yadav, F. Rahaman, and S. Ray, “Dark energy models with variable equation of state parameter,” Intern. J. Theor. Phys. 50, 871–881 (2011).

    MATH  Google Scholar 

  204. A. K. Yadav, “Some anisotropic dark energy models in Bianchi type-V space-time,” Astrophys. Space Sci. 335, 565–575 (2011).

    ADS  Google Scholar 

  205. M. K. Yadav, A. Rai, and A. Pradhan, “Some Bianchi type III string cosmological models with bulk viscosity,” Intern. J. Theor. Phys. 46, 2677–2687 (2007).

    MATH  MathSciNet  Google Scholar 

  206. A. K. Yadav and L. Yadav, “Bianchi type III anisotropic dark energy models with constant deceleration parameter,” Intern. J. Theor. Phys. 50, 218–227 (2011).

    MATH  Google Scholar 

  207. Mohd. Zeyauddin and Bijan Saha, “Bianchi type-VI cosmological model: a scale-covariant study,” Astrophys. Space Sci., pp. 445–450 (2013).

    Google Scholar 

  208. Ya. B. Zeldovich, “Magnetic models of the universe,” J. Exper. Theor. Phys. 48, 986–988 (1970).

    Google Scholar 

  209. Ya. B. Zeldovich, “Particle creation in cosmology,” Letter to the J. Exper. Theor. Phys. 12, 443–447 (1970).

    Google Scholar 

  210. I. Zlatev, L. Wang, and P. J. Steinhardt, “Quintessence, cosmic coincidence, and the cosmological constant,” Phys. Rev. Lett. 82(5), 896–899 (1999).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bijan Saha.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saha, B. Isotropic and anisotropic dark energy models. Phys. Part. Nuclei 45, 349–396 (2014). https://doi.org/10.1134/S1063779614020026

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779614020026

Keywords

Navigation