Skip to main content
Log in

Taming Landau singularities in QCD perturbation theory: The analytic approach 2.0

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The aim of this topical article is to outline the fundamental ideas underlying the recently developed Fractional Analytic Perturbation Theory (FAPT) of QCD and present its main calculational tools together with key applications. For this, it is first necessary to review previous methods to apply QCD perturbation theory at low spacelike momentum scales, where the influence of the Landau singularities becomes inevitable. Several concepts are considered and their limitations are pointed out. The usefulness of FAPT is discussed in terms of two characteristic hadronic quantities: the perturbatively calculable part of the pion’s electromagnetic form factor in the spacelike region and the Higgs-boson decay into a b \(\bar b\) pair in the timelike region. In the first case, the focus is on the optimization of the prediction with respect to the choice of the renormalization scheme and the dependence on the renormalization and the factorization scales. The second case serves to show that the application of FAPT to this reaction reaches already at the four-loop level an accuracy of the order of 1%, avoiding difficulties inherent in the standard perturbative expansion. The obtained results are compared with estimates from fixed-order and contour-improved QCD perturbation theory. Using the brand-new Higgs mass value of about 125 GeV, measured at the Large Hadron Collider (CERN), a prediction for \(\Gamma _{H \to b\bar b} \) = 2.4 ± 0.15 MeV is extracted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. Gross and F. Wilczek, Ultraviolet Behavior of Nonabelian Gauge Theories, Phys. Rev. Lett., 30, 1343–1346 (1973).

    Article  ADS  Google Scholar 

  2. H. D. Politzer, Reliable Perturbative Results for Strong Interactions?, Phys. Rev. Lett., 30, 1346–1349 (1973).

    Article  ADS  Google Scholar 

  3. A. L. Kataev and V. T. Kim, Uncertainties of QCD Predictions for Higgs Boson Decay into Bottom Quarks at NNLO and beyond, PoS., ACAT08, 004 (2009).

    Google Scholar 

  4. N. G. Stefanis, W. Schroers, and H. C. Kim, Pion Form Factors with Improved Infrared Factorization, Phys. Lett., B, 1999, 449, 299; Analytic Coupling and Sudakov Effects in Exclusive Processes: Pion and γ*γ → π0 Form Factors, Eur. Phys. J., C, 18, 137 (2000).

    Article  ADS  Google Scholar 

  5. A. P. Bakulev, K. Passek-Kumeri ki, W. Schroers, and N. G. Stefanis, Pion Form Factor in QCD: From Nonlocal Condensates to NLO Analytic Perturbation Theory, Phys. Rev., D, 70, 033014 (2004).

    Article  ADS  Google Scholar 

  6. J. M. Cornwall, Dynamical Mass Generation in Continuum QCD, Phys. Rev., D, 26, 1453 (1982).

    Article  ADS  Google Scholar 

  7. N. G. Stefanis, The Physics of Exclusive Reactions in QCD: Theory and Phenomenology, Eur. Phys. J. direct C 7 1–109 (1999) DOI 10.1007/s101059900c0007, C, 7, 1–109 (1999).

    Google Scholar 

  8. J. M. Cornwall and A. Soni, Glueballs as Bound States of Massive Gluons, Phys. Lett., B, 120, 431 (1983).

    Article  ADS  Google Scholar 

  9. J. Botts and G. Sterman, Hard Elastic Scattering in QCD: Leading Behavior, Nucl. Phys., B, 325, 62 (1989).

    Article  ADS  Google Scholar 

  10. H.-N. Li and G. Sterman, The Perturbative Pion Form-Factor with Sudakov Suppression, Nucl. Phys., B, 381, 129–140 (1992).

    Article  ADS  Google Scholar 

  11. J. Bolz, R. Jakob, P. Kroll, M. Bergmann, and N. G. Stefanis, A Critical Analysis of the Proton Form-Factor with Sudakov Suppression and Intrinsic Transverse Momentum, Z. Phys., C, 66, 267–278 (1995).

    Article  ADS  Google Scholar 

  12. N. G. Stefanis, Implications of Gluon Radiation Effects and Soft Transverse Momenta for the Nucleon Substructure in QCD, Mod. Phys. Lett., A, 10, 1419–1434 (1995).

    Article  ADS  Google Scholar 

  13. N. V. Krasnikov and A. A. Pivovarov, The Influence of the Analytical Continuation Effects on the Value of the QCD Scale Parameter Lambda Extracted from the Data on Charmonium and Upsilon Hadron Decays, Phys. Lett., B, 116, 168–170 (1982).

    Article  ADS  Google Scholar 

  14. A. V. Radyushkin, Optimized Lambda-Parametrization for the QCD Running Coupling Constant in Space-Like and Time-Like Regions, JINR Rapid Commun., 78, 96–99 (1996); JINR Preprint E2-82-159, Dubna, 1982.

    Google Scholar 

  15. P. Ball, M. Beneke, and V. M. Braun, Resummation of (β0αs)n Corrections in QCD: Techniques and Applications to the tau Hadronic Width and the Heavy Quark Pole Mass, Nucl. Phys., B, 452, 563–625 (1995).

    Article  ADS  Google Scholar 

  16. M. Beneke and M. Jamin, αs and the tau Hadronic Width: Fixed-Order, Contour-Improved and Higher-Order Perturbation Theory, JHEP, 09, 044 (2008).

    Article  ADS  Google Scholar 

  17. A. P. Bakulev, S. V. Mikhailov, and N. G. Stefanis, Fractional Analytic Perturbation Theory in Minkowski Space and Application to Higgs Boson Decay into a b \(\bar b\) Pair, Phys. Rev., D, 75, 056005 (2007).

    Article  ADS  Google Scholar 

  18. D. V. Shirkov and I. L. Solovtsov, Analytic Model for the QCD Running Coupling with Universal \(\bar \alpha _s 0\) Value, Phys. Rev. Lett., 79, 1209–1212 (1997); D. V. Shirkov and I. L. Solovtsov, Ten Years of the Analytic Perturbation Theory in QCD, Theor. Math. Phys., 150, 132 (2007).

    Article  ADS  Google Scholar 

  19. N. N. Bogolyubov, A. A. Logunov, and D. V. Shirkov, The Method of Dispersion Relations and Perturbation Theory, Soviet Phys. JETP, 10, 574 (1960).

    Google Scholar 

  20. P. J. Redmond and J. L. Uretsky, Conjecture Concerning the Properties of Nonrenormalizable Field Theories, Phys. Rev. Lett., 1, 147–148 (1958).

    Article  ADS  Google Scholar 

  21. A. P. Bakulev, A. I. Karanikas, and N. G. Stefanis, Analyticity Properties of Three-Point Functions in QCD beyond Leading Order, Phys. Rev., D, 72, 074015 (2005).

    Article  ADS  Google Scholar 

  22. A. P. Bakulev, S. V. Mikhailov, and N. G. Stefanis, QCD Analytic Perturbation Theory: from Integer Powers to Any Power of the Running Coupling, Phys. Rev., D, 72,074014 (2005); [Phys._Rev., D (E), 72, 119908 (2005)].

    Article  ADS  Google Scholar 

  23. A. I. Karanikas and N. G. Stefanis, Analyticity and Power Corrections in Hard-Scattering Hadronic Functions, Phys. Lett., B, 504, 225–234 (2001) Erratum [Phys. Lett. B 636, 330–331(E) (2006)]; N.G. Stefanis,, Perturbative Logarithms and Power Corrections in QCD Hadronic Functions: A Unifying Approach, Lect. Notes Phys., 616, 153 (2003).

    Article  ADS  Google Scholar 

  24. A. P. Bakulev, Global Fractional Analytic Perturbation Theory in QCD with Selected Applications, Phys. Part. Nucl., 40, 715–756 (2009).

    Article  Google Scholar 

  25. A. P. Bakulev, S. V. Mikhailov, and N. G. Stefanis, Higher-Order QCD Perturbation Theory in Different Schemes: from FOPT to CIPT to FAPT, JHEP, 1006, 085(1–38) (2010).

    Google Scholar 

  26. S. Gorishnii, A. Kataev, S. Larin, and L. Surguladze, Corrected Three Loop QCD Correction to the Correlator of the Quark Scalar Currents and γtot (H0 → hadrons), Mod. Phys. Lett., A, 5, 2703–2712 (1990).

    Article  ADS  Google Scholar 

  27. K. G. Chetyrkin, B. A. Kniehl, and A. Sirlin, Estimations of Order α 3s and α 4s Corrections to Mass-Dependent Observables, Phys. Lett., B, 402, 359–366 (1997); P. A. Baikov, K. G. Chetyrkin,, and J. H.,K5uhn, Scalar Correlator at O(alpha(s)**4), Higgs Decay into b-Quarks and Bounds on the Light Quark Masses, Phys. Rev. Lett., 96, 012003 (2006).

    Article  ADS  Google Scholar 

  28. D. J. Broadhurst, A. L. Kataev, and C. J. Maxwell, Renormalons and Multiloop Estimates in Scalar Correlators, Higgs Decay and Quark-Mass Sum Rule, Nucl. Phys., B, 592, 247–293 (2001).

    Article  ADS  Google Scholar 

  29. A. P. Bakulev and I. V. Potapova, Resummation Approach in QCD Analytic Perturbation Theory, Nucl. Phys., B (Suppl.), 219220, 193–200 (2011).

    Article  Google Scholar 

  30. A. A. Penin and M. Steinhauser, Heavy Quarkonium Spectrum at O(α 5s m q) and Bottom/Top Quark Mass Determination, Phys. Lett., B, 2002, 538, 335–345 (2002).

    Article  Google Scholar 

  31. J. H. Kühn and M. Steinhauser, Determination of αs and Heavy Quark Masses from Recent Measurements of R(s), Nucl. Phys., B, 619, 588–602 (2001).

    Article  ADS  Google Scholar 

  32. A. P. Bakulev and V. L. Khandramai, FAPT: A Mathematica Package for Calculations in QCD Fractional Analytic Perturbation Theory, arXiv:1204.2679[hep-ph].

  33. G. Aad, et al., (ATLAS Collaboration), Combined Search for the Standard Model Higgs Boson in pp Collisions at \(\sqrt s \) = 7 TeV with the ATLAS Detector, arXiv:1207.0319[hep-ex]. Phys. Rev. D 86, 032003 (2012).

    Article  ADS  Google Scholar 

  34. S. Chatrchyan, et al., (CMS Collaboration) Combined Results of Searches for the Standard Model Higgs Boson in pp Collisions at sqrt(s) = 7 TeV, Phys. Lett., B, 710, 26–48 (2012).

    Article  ADS  Google Scholar 

  35. V. M. Abazov, et al., (D0 Collaboration) Combined Search for the Standard Model Higgs Boson Decaying to b \(\bar b\) Using the D0 Run II Data Set, arXiv:1207.6631[hep-ex]. Phys. Rev. Lett. 109, 121802 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Stefanis.

Additional information

This is an extended and updated version of an invited plenary talk at the International Conference Renormalization Group and Related Topics (RG 2008), Dubna, Russia, September 1–5, 2008.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stefanis, N.G. Taming Landau singularities in QCD perturbation theory: The analytic approach 2.0. Phys. Part. Nuclei 44, 494–509 (2013). https://doi.org/10.1134/S1063779613030155

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779613030155

Keywords

Navigation