Skip to main content
Log in

Factorization method for Schrödinger equation in relativistic configuration space and q-deformations

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

Review paper is devoted to the relativistic configuration space (RCS) concept, a version of the relativistic Quantum Mechanics in RCS, the generalization of the Dirac-Infeld-Hall factorization method in the framework of the noncommutative differential calculus natural for RCS, different versions of the deformed oscillators, emerging as the generalization of the harmonic oscillator for RCS. In the formulation of the Newton-Wigner postulates for the relativistic localized states the hypothesis of commutativity of the position operator components is silently accepted as an evident fact. In the present work it is shown that commutativity is not necessary condition and the alternative (noncommutative) approach to the relativistic position operator and localization concept can be realized in a framework of the physically as well as mathematically comprehensive scheme. The different generalizations of the Dirac-Infeld-Hall factorization method for this case are constructed. This method enables us to find out all possible generalizations of the most important nonrelativistic integrable case—the harmonic oscillator. It is shown also that the relativistic oscillator = q—oscillator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Newton and E. Wigner, Rev. Mod. Phys. 21(3), 400 (1949).

    Article  ADS  MATH  Google Scholar 

  2. E. Wigner, Ann. Math. 40, 149 (1939).

    Article  MathSciNet  Google Scholar 

  3. A. S. Wightman, Rev. Mod. Phys. 34(4), 845 (1962).

    Article  MathSciNet  ADS  Google Scholar 

  4. R. M. Mir-Kasimov, Phys. Elem. Part. Atom. Nucl., Letters 3(5), 17–43 (2006).

    ADS  Google Scholar 

  5. R. M. Mir-Kasimov, J. Phys., Ser. A 24, 4283 (1991).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. R. M. Mir-Kasimov, Foundations Phys. 32(4), 607 (2002).

    Article  MathSciNet  Google Scholar 

  7. K. Koizumi, R. M. Mir-Kasimov, and I. S. Sogami, Prog. Theor. Phys. 110, 819 (2003).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. R. M. Mir-Kasimov, Phys. Elem. Part. Atom. Nucl., Letters 7(5), 505–515 (2010).

    Google Scholar 

  9. Z. Can, Z. Güven, R. M. Mir-Kasimov, and O. Oĝuz, Phys. Elem. Part. Atom. Nucl. 64(12), 226–245 (2001).

    Google Scholar 

  10. M. I. Shirokov, Annalen der Physik 10(1–2), 60 (1962).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. N. A. Chernikov, Phys. Elem. Part. Atom. Nucl. 4(1–2), 226 (1972).

    Google Scholar 

  12. R. A. Asanov and G. N. Afanasyev, Phys. Elem. Part. Atom. Nucl. 27(3), 713–476 (1996).

    Google Scholar 

  13. A. Connes, Noncommutative Geometry (Academic Press, 1994).

    MATH  Google Scholar 

  14. A. Dimakis and F. Müller-Hoissen, J. Math. Phys. 45, 1518 (2003).

    Google Scholar 

  15. E. Angelopoulos, E. Bayen, and M. Flato, Physica Scripta 9, 173 (1974).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. R. M. Lopez, S. K. Suslov, and J. M. Vega-Guzman, arXiv:1112.2586[quant-ph].

  17. A. F. Nikiforov, S. K. Suslov, and V. B. Uvarov, Classical Orthogonal Polynomials of a Discrete Variable (Berlin-Heidelberg, Springer-Verlag, 1991).

    Book  MATH  Google Scholar 

  18. G. Gasper and M. Rahman, Basic Hypergeometric Series (Cambridge University Press, 1990).

    MATH  Google Scholar 

  19. G. E. Andrews, R. Askey, and R. Roy, Special Functions (Cambridge University Press, 2000).

    MATH  Google Scholar 

  20. R. A. Askey and M. E. H. Ismail, A Generalization of Ultraspherical Polynomials. Studies in Pure Mathematics, Ed. by P. Erdös (Birkhauser, Boston, Massachusetts, 1983), pp. 55–78.

  21. N. Ya. Vilenkin and A. U. Klimyk, Representation of Lie Groups and Special Functions, Vols. 1–3 (Kluwer Academic Publishers, 1991).

    Book  MATH  Google Scholar 

  22. D. D. Coon, Phys. Lett., Ser. B 29, 669 (1969); M. Arik and D. D. Coon, J. Math. Phys. 17, 524 (1975).

    Article  ADS  Google Scholar 

  23. A. J. Macfarlane, J. Phys., Ser. A 22, 4581 (1989).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. L. C. Biedenharn, J. Phys., Ser. A 22, L873 (1989).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. V. I. Manko, G. Marmo, S. Solimeno, and F. Zaccaria, Phys. Lett., Ser. A 176, 173 (1993).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mir-Kasimov, R.M. Factorization method for Schrödinger equation in relativistic configuration space and q-deformations. Phys. Part. Nuclei 44, 422–436 (2013). https://doi.org/10.1134/S1063779613030088

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779613030088

Keywords

Navigation