Skip to main content
Log in

Integrabilty of the BFKL dynamics and Pomeron trajectories in a thermostat

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

We consider scattering amplitudes in QCD at high energies \(\sqrt s \) and fixed momentum transfers \(q = \sqrt { - t} \) with a non-zero temperature T in the t-channel. In the s-channel the temperature leads to a compactification of the impact parameter plane. We find that the thermal BFKL Hamiltonian in the leading logarithmic approximation proceeds to have the property of the holomorphic separability. Moreover, there exists an integral of motion allowing one to construct the Pomeron wave function for arbitrary T in the coordinate and momentum representations. The holomorphic Hamiltonian for n-reggeized gluons at T ≠ 0 in the multicolour limit N c → ∞ turns out to be equal to the local Hamiltonian for an integrable Heisenberg spin model. Further, the two-gluon Baxter function coincides with the corresponding wave function in the momentum representation. We calculate the spectrum of the Pomeron Regge trajectories at a finite temperature with taking into account the QCD running coupling. The important effect of the t-channel temperature is the appearence of a confining potential between gluons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. N. Lipatov, Sov. J. Nucl. Phys. 23, 642 (1976); V. S. Fadin, E. A. Kuraev, and L. N. Lipatov, Phys. Lett. B 60, 50 (1975); Sov. Phys. JETP 44, 443 (1976); 45, 199 (1977); Ya. Ya. Balitsky and L. N. Lipatov, Sov. J. Nucl. Phys. 28, 822 (1978).

    Google Scholar 

  2. V. S. Fadin and L. N. Lipatov, Phys. Lett. B 429, 127 (1998); G. Camici and M. Ciafaloni, Phys. Lett. B 430, 349 (1998); A. V. Kotikov and L. N. Lipatov, Nucl. Phys. B 582, 19 (2000); hep-ph/0208220.

    Article  ADS  Google Scholar 

  3. V. N. Gribov and L. N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972); L. N. Lipatov, Sov. J. Nucl. Phys. 20, 93 (1975); G. Altarelli and G. Parisi, Nucl. Phys. B 126,298 (1977); Yu. L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977).

    Google Scholar 

  4. L. N. Lipatov, Pomeron in QCD, Perturbative QCD, Ed. by A. N. Mueller (World Scientific, 1989); Small-x Physics in the Perturbative QCD, Phys. Rep. 286, 132 (1997).

  5. L. N. Lipatov, Sov. Phys. JETP 63, 904 (1986).

    Google Scholar 

  6. L. N. Lipatov, Phys. Lett. B 251, 284 (1990).

    Article  ADS  Google Scholar 

  7. J. Bartels, L. N. Lipatov, and G. V. Vacca, Nucl. Phys. B 706, 391 (2005).

    Article  ADS  Google Scholar 

  8. J. Bartels et al., Nucl. Phys. B 726, 53 (2005).

    Article  ADS  MATH  Google Scholar 

  9. S. J. Brodsky et al., JETP Letters B 70, 155 (1999); B 76, 306 (2002).

    Article  ADS  Google Scholar 

  10. See for example, J. I. Kapusta, Finite Temperature Field Theory (Cambridge Univ. Press, 1989); M. Le Bellac, Thermal Field Theory (Cambridge University Press, 1996).

    MATH  Google Scholar 

  11. Quark-Gluon Plasma 3, Eds. by R. C. Hwa and X. N. Wang (World Scientific, September 2003); E. V. Shuryak, The QCD Vacuum, Hadrons and Superdense Matter, World Sci. Lect. Notes Phys. 8, 1–401 (1988); H. Satz, Rept. Prog. Phys. 63, 1511 (2000); See also, E. V. Shuryak and I. Zahed, hep-ph/0307267.

    Google Scholar 

  12. H. J. de Vega and L. N. Lipatov, Phys. Lett. B 578, 335 (2004).

    Article  ADS  Google Scholar 

  13. J. Bartels, L. N. Lipatov, and K. Peters, hepph/0610303.

  14. L. N. Lipatov and L. Szymanowsky, Some Remarks on the Pomeranchuk Singularity in a Non-Abelian Gauge Theory, Preprint of Inst. of Nucl. Res. “P” IBJ No. 11(VII) (Warszawa, 1980, unpublished).

    Google Scholar 

  15. D. Y. Ivanov et al., Phys. Rev. D 58, 074010 (1998).

    Article  ADS  Google Scholar 

  16. L. N. Lipatov, Phys. Lett. B 309, 394 (1993).

    Article  ADS  Google Scholar 

  17. J. Bartels, Nucl. Phys. B 175, 365 (1980); J. Kwiecinski and M. Prascalowicz, Phys. Lett. B 94, 413 (1980).

    Article  ADS  Google Scholar 

  18. L. N. Lipatov, in Proceedings of the Fifth Blois Workshop, Eds. by H. M. Fried, K. Kang, and C.-I. Tan (World Scientific, June 1993).

  19. L. N. Lipatov, High Energy Asymptotics of MultiColour QCD and Exactly Solvable Lattice Models, hep-th/9311037, Padova Preprint DFPD/93/TH/70 (unpublished).

  20. L. N. Lipatov, Sov. Phys. JETP Lett. 59, 571 (1994).

    Google Scholar 

  21. L. D. Faddeev and G. P. Korchemsky, Phys. Lett. 342, 311 (1995).

    Google Scholar 

  22. R. Janik and J. Wosiek, Phys. Rev. Lett. 79, 2935 (1997); 82, 1092 (1999).

    Article  ADS  Google Scholar 

  23. L. N. Lipatov, Nucl. Phys. B 548, 328 (1999).

    Article  ADS  Google Scholar 

  24. J. Bartels, L. N. Lipatov, and G. P. Vacca, Phys. Lett. B 477, 178 (2000).

    Article  ADS  Google Scholar 

  25. H. J. de Vega and L. N. Lipatov, Phys. Rev. D 64, 114019 (2001); D 66, 074013 (2002). 114019 (2001); D 66, 074013 (2002).

    Article  ADS  Google Scholar 

  26. S. Derkachev, G. Korchemsky, and A. Manashov, Nucl. Phys. B 617, 375 (2001); G. Korchemsky, J. Kotanski, and A. Manashov, Phys. Rev. Lett. 88, 122002 (2002).

    Article  MathSciNet  ADS  Google Scholar 

  27. R. J. Baxter, Ann. Phys. 70, 193 (1972).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. R. Baxter, Exactly Solved Model in Statistical Mechanics (Academic Press, London, 1982); L. A. Takhtajan and L. A. Faddeev, Russ. Math. Surveys 34, 596 (1994); P. P. Kulish and E. K. Sklyanin, Integrable QFT, Eds. by J. Hietarinta and C. Montonen, V. 151: Lecture Notes in Physics (Springer, Berlin, 1982), p. 66; V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions (Cambridge UniversityPress, Cambridge, England, 1993); H. J. de Vega, Int. J. Mod. Phys. (review section), 4, 2371–2463 (1989).

    Google Scholar 

  29. E. K. Sklyanin, “Non-Linear Equations in Classical and Quantum Field Theory,” in Proceedings, Meudon and Paris-6, 1983–1984, Ed. by N. Sanchez, Lecture Notes in Physics, 226 (1985); (Springer-Verlag, Berlin, 1985).

    Google Scholar 

  30. I. Balitsky, Phys. Rev. D 60, 014020 (1999); Y. V. Kovchegov, Phys. Rev. D 61, 074018 (2000).

    Article  ADS  Google Scholar 

  31. J. Bartels, V. S. Fadin, and L. N. Lipatov, Nucl. Phys. B 698, 255 (2004).

    Article  ADS  MATH  Google Scholar 

  32. L. N. Lipatov, Nucl. Phys. B 452, 369 (1995).

    Article  ADS  Google Scholar 

  33. See for example, N. D. Birrell and P. C. W. Davis, Quantum Fields in Curved Space (Cambridge U. Press, 1982 and references therein); S. W. Hawking, Comm. Math. Phys. 43, 199 (1975); N. Sanchez, Phys. Lett. B 87, 212 (1979); Phys. Rev. D 24, 2100 (1981).

  34. L. N. Lipatov, Sov. Phys. JETP 63, 904 (1986) [Zh. Exp. Teor. Fiz. 90, 1536 (1986)].

    Google Scholar 

  35. H. J. de Vega and L. N. Lipatov, Phys. Lett. B 578, 335 (2004).

    Article  ADS  Google Scholar 

  36. I. S. Gradshteyn and I. M. Ryshik, Table of Integrals, Series and Products (Academic Press, 1980).

    MATH  Google Scholar 

  37. A. P. Prudnikov, Yu. A. Brichkov, and O. I. Marichev, Integrals and Series, Vol. 3 (Nauka, Moscow, 1986).

    Google Scholar 

  38. H. J. de Vega and M. Simionato, Phys. Rev. D 64, 021703(R) (2001).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Vega, H., Lipatov, L.N. Integrabilty of the BFKL dynamics and Pomeron trajectories in a thermostat. Phys. Part. Nuclei 44, 515–538 (2013). https://doi.org/10.1134/S1063779613030027

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779613030027

Keywords

Navigation