Advertisement

Physics of Particles and Nuclei

, Volume 44, Issue 2, pp 285–298 | Cite as

Understanding PT results for decays of τ-leptons into hadrons

  • S. Groote
  • J. G. Körner
  • A. A. Pivovarov
Article

Abstract

We review some of our results obtained in the field of the structure of PT series in high orders and its resummation in some particular circumstances.

Keywords

Perturba Tion Theory Renormalization Group Decay Width Renormalization Group Equation Renormalization Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. N. Bogoliubov and O. S. Parasiuk, “On the Multiplication of the Causal Function in the Quantum Theory of Fields,” Acta Math. 97, 227 (1957).MathSciNetCrossRefGoogle Scholar
  2. 2.
    G.’ t Hooft and M. J. G. Veltman, “Regularization and Renormalization of Gauge Fields,” Nucl. Phys. B 44, 189 (1972).ADSCrossRefGoogle Scholar
  3. 3.
    V. V. Belokurov et al., “Ultraviolet Behaviour of Spontaneously Broken Gauge Theories,” Phys. Lett. B 47, 359 (1973).ADSCrossRefGoogle Scholar
  4. 4.
    F. J. Dyson, “Divergence of Perturbation Theory in Quantum Electrodynamics,” Phys. Rev. 85, 631 (1952).MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. 5.
    G. Parisi, Phys. Lett. B 76, 65 (1978); Nucl. Phys. B 150, 163 (1979).MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    D. I. Kazakov and D. V. Shirkov, “Asymptotic Series of Quantum Field Theory and Their Summation,” Fortsch. Phys. 28, 465 (1980).MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    D. I. Kazakov and V. S. Popov, “On the Summation of Divergent Perturbation Series in Quantum Mechanics and Field Theory,” J. Exp. Theor. Phys. 95, 581 (2002) [Zh._Eksp. Teor. Fiz. 122, 675 (2002)].ADSCrossRefGoogle Scholar
  8. 8.
    D. I. Kazakov and A. I. Onishchenko, “Numerical Analysis of Convergent Perturbation Expansions in Quantum Theory,” Theor. Math. Phys. 110, 229 (1997) [Teor. Mat. Fiz. 110, 291 (1997)].zbMATHCrossRefGoogle Scholar
  9. 9.
    L. D. Landau, A. A. Abrikosov, and I. M. Khalatnikov, Dokl. Akad. Nauk SSSR 95, 497, 773, 1177 (1954).zbMATHGoogle Scholar
  10. 10.
    L. D. Landau and I. Ya. Pomeranchuk, Dokl. Akad. Nauk SSSR 102, 489 (1955); I. Ya. Pomeranchuk, Dokl. Akad. Nauk SSSR 103, 1005 (1955).MathSciNetzbMATHGoogle Scholar
  11. 11.
    M. Gell-Mann and F. E. Low, “Quantum Electrodynamics at Small Distances,” Physical Review 95(5), 1300–1320 (1954); N. N. Bogoliubov and D. V. Shirkov, Introduction to the Theory of Quantized Fields, 3rd ed. (Nauka, Moscow, 1976; Wiley, N.-Y., 1980).MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. 12.
    D. I. Kazakov, Radiative Corrections, Divergences, Regularization, Renormalization, Renormalization Group and All That in Examples in Quantum Field Theory, arXiv:0901.2208 [hep-ph].Google Scholar
  13. 13.
    L. N. Lipatov, Zh. Eksp. Teor. Fiz. 72, 411 (1977) [Sov. Phys. JETP 45, 216 (1977)].MathSciNetGoogle Scholar
  14. 14.
    G.’ t Hooft, “A Planar Diagram Theory for Strong Interactions,” Nucl. Phys. B 72, 461 (1974).ADSCrossRefGoogle Scholar
  15. 15.
    R. Coquereaux, Phys. Rev. D 23, 2276 (1981).ADSCrossRefGoogle Scholar
  16. 16.
    D. J. Broadhurst and A. G. Grozin, Phys. Rev. D 52, 4082 (1995); M. Beneke and V. Braun, Phys. Lett. B 348, 513 (1995); C. N. Lovett-Turner and C. J. Maxwell, Nucl. Phys. B 452, 188 (1995).ADSCrossRefGoogle Scholar
  17. 17.
    N. V. Krasnikov and A. A. Pivovarov, Phys. Lett. B 116, 168 (1982).ADSCrossRefGoogle Scholar
  18. 18.
    A.V. Radyushkin, JINR Rapid Commun. 78, 96 (1996); JINR-E2-82-159-mc (microfiche), Feb 1982.Google Scholar
  19. 19.
    A. A. Pivovarov, “Renormalization Group Analysis of the Tau Lepton Decay within QCD,” Sov. J. Nucl. Phys. 54, 676 (1991); Z. Phys. C 53, 461 (1992); Nuovo Cim. A 105, 813 (1992).Google Scholar
  20. 20.
    S. I. Dolinsky et al., Phys. Rep. C 202, 99 (1991).ADSCrossRefGoogle Scholar
  21. 21.
    J. G. Korner, A. A. Pivovarov, and K. Schilcher, “On the Running Electromagnetic Coupling Constant at M(Z),” Eur. Phys. J. C 9, 551 (1999); [hep-ph/9812465]; A. A. Pivovarov, “Running Electromagnetic Coupling Constant: Low-Energy Normalization and the Value at M(Z),” Phys. Atom. Nucl. 65, 1319 (2002) [Yad. Fiz. 65, 1352 (2002)]; [hep-ph/0011135].ADSGoogle Scholar
  22. 22.
    S. Eidelman and F. Jegerlehner, Z. Phys. C 67, 585 (1995).ADSCrossRefGoogle Scholar
  23. 23.
    A. A. Pivovarov, “Muon Anomalous Magnetic Moment: A Consistency Check for the Next-to-Leading Order Hadronic Contributions,” Phys. Atom. Nucl. 66, 902 (2003) [Yad. Fiz. 66, 934 (2003)]; [hep-ph/0110248].ADSCrossRefGoogle Scholar
  24. 24.
    W. de Boer et al., “A Global Fit to the Anomalous Magnetic Moment, bXsγ and Higgs Limits in the Constrained MSSM,” Phys. Lett. B 515, 283 (2001).ADSCrossRefGoogle Scholar
  25. 25.
    C. Bernard et al., “Exact Spectral Function Sum Rules,” Phys. Rev. D 12, 792 (1975); E. C. Poggio, H. R. Quinn, and S. Weinberg, “Smearing the Quark Model,” Phys. Rev. D 13, 1958 (1976).ADSCrossRefGoogle Scholar
  26. 26.
    R. Shankar, “Determination of the Quark-Gluon Coupling Constant,” Phys. Rev. D 15, 755 (1977).ADSCrossRefGoogle Scholar
  27. 27.
    K. G. Chetyrkin, N. V. Krasnikov, and A. N. Tavkhelidze, “Finite Energy Sum Rules for the Cross-Section of E+E-Annihilation into Hadrons in QCD,” Phys. Lett. B 76, 83 (1978).ADSCrossRefGoogle Scholar
  28. 28.
    D. I. Kazakov and D. V. Shirkov, “Scheme Invariant Perturbation Theory in Massive QCD. (in Russian),” Yad. Fiz. 42, 768 (1985).Google Scholar
  29. 29.
    S. Groote et al., “New High Order Relations between Physical Observables in Perturbative QCD,” Phys. Rev. Lett. 79, 2763 (1997); [hep-ph/9703208].ADSCrossRefGoogle Scholar
  30. 30.
    G. Grunberg, “Renormalization Group Improved Perturbative QCD,” Phys. Lett. B 95, 70 (1980).ADSCrossRefGoogle Scholar
  31. 31.
    P. M. Stevenson, Phys. Rev. D 23, 2916 (1981); Nucl. Phys. B 231, 65 (1984).ADSCrossRefGoogle Scholar
  32. 32.
    S. J. Brodsky, G. P. Lepage, and P. B. Mackenzie, Phys. Rev. D 28, 228 (1983).ADSCrossRefGoogle Scholar
  33. 33.
    E. Braaten, Phys. Rev. Lett. 60, 1606 (1988).ADSCrossRefGoogle Scholar
  34. 34.
    E. Braaten, Phys. Rev. D 39, 1458 (1989).ADSCrossRefGoogle Scholar
  35. 35.
    S. Narison and A. Pich, Phys. Lett. B 211, 183 (1988).ADSCrossRefGoogle Scholar
  36. 36.
    E. Braaten, S. Narison and A. Pich, “QCD Analysis of the Tau Hadronic Width,” Nucl. Phys. B 373, 581 (1992).ADSCrossRefGoogle Scholar
  37. 37.
    K. G. Chetyrkin, J. H. Kühn, and A. Kwiatkowski, “QCD Corrections to the e+ e Cross Section and the Z Boson Decay Rate: Concepts and Results,” Phys. Rept. 277, 189 (1996).ADSCrossRefGoogle Scholar
  38. 38.
    S. G. Gorishnii, A. L. Kataev, and S. A. Larin, Phys. Lett. B 259, 144 (1991); L. R. Surguladze and M. A. Samuel, Phys. Rev. Lett. 66, 560, 2416(E) (1991).ADSCrossRefGoogle Scholar
  39. 39.
    K. G. Chetyrkin, Phys. Lett. B 391, 402 (1997).ADSCrossRefGoogle Scholar
  40. 40.
    P. A. Baikov, K. G. Chetyrkin, and J. H. Kuhn, “Order QCD Corrections to Z and Tau Decays,” Phys. Rev. Lett. 101, 012002 (2008); arXiv:0801.1821 [hep-ph].ADSCrossRefGoogle Scholar
  41. 41.
    J. G. Korner, F. Krajewski, and A. A. Pivovarov, “Asymptotic Structure of Perturbative Series for Tau Lepton Decay Observables: m**2(s) Corrections,” Eur. Phys. J. C 14, 123 (2000); Eur. Phys. J. C 12, 461 (2000); [hep-ph/9909225].ADSGoogle Scholar
  42. 42.
    M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Nucl. Phys. B 147, 385 (1979).ADSCrossRefGoogle Scholar
  43. 43.
    D. S. Gorbunov and A. A. Pivovarov, “Disentangling Perturbative and Power Corrections in Precision Tau Decay Analysis,” Phys. Rev. D 71, 013002 (2005); [hep-ph/0410196].ADSCrossRefGoogle Scholar
  44. 44.
    N. V. Krasnikov, “Analyticity and Renormalization Group,” Nucl. Phys. B 192, 497 (1981).MathSciNetADSCrossRefGoogle Scholar
  45. 45.
    A. L. Kataev, N. V. Krasnikov, and A. A. Pivovarov, “The Connection between the Scales of the Gluon and Quark Worlds in Perturbative QCD,” Phys. Lett. B 107, 115 (1981); Nucl. Phys. B 198, 508 (1982); Erratum ibid. 490, 505 (1997).ADSCrossRefGoogle Scholar
  46. 46.
    A. Dhar and V. Gupta, Phys. Rev. D 29, 2822 (1984).ADSCrossRefGoogle Scholar
  47. 47.
    J. G. Körner, F. Krajewski, and A. A. Pivovarov, “Strong Coupling Constant from Tau Decay within Renormalization Scheme Invariant Treatment,” Phys. Rev. D 63, 036001 (2001).ADSCrossRefGoogle Scholar
  48. 48.
    T. van Ritbergen, J. A. M. Vermaseren, and S. A. Larin, Phys. Lett. B 400, 379 (1997).ADSCrossRefGoogle Scholar
  49. 49.
    K. G. Chetyrkin, B. A. Kniehl, and M. Steinhauser, Phys. Rev. Lett. 79, 2184 (1997).ADSCrossRefGoogle Scholar
  50. 50.
    G. ’t Hooft, “Can We Make Sense Out of ‘Quantum Chromodynamics’?” in Lectures Given at the Int. School of Subnuclear Physics, Erice, Sicily, Jul 23–Aug 10, 1977.Google Scholar
  51. 51.
    F. David, Nucl. Phys. B 209, 433 (1982).ADSCrossRefGoogle Scholar
  52. 52.
    A. H. Mueller, Nucl. Phys. B 250, 327 (1985). αs 4MathSciNetADSCrossRefGoogle Scholar
  53. 53.
    V. I. Zakharov, Nucl. Phys. B. V. 385. P. 452 (1992).ADSCrossRefGoogle Scholar
  54. 54.
    M. Beneke, Phys. Lett. B 307, 154 (1993); Nucl. Phys. B 405, 424 (1993).ADSCrossRefGoogle Scholar
  55. 55.
    P. Ball, M. Beneke, and V. M. Braun, Nucl. Phys. B 452, 563 (1995).ADSCrossRefGoogle Scholar
  56. 56.
    I. I. Bigi et al., Phys. Rev. D 50, 2234 (1994).ADSCrossRefGoogle Scholar
  57. 57.
    A. V. Manohar and M. B. Wise, Phys. Lett. B 344, 407 (1995).ADSCrossRefGoogle Scholar
  58. 58.
    B. R. Webber, Phys. Lett. B 339, 148 (1994); Yu. L. Dokshitzer and B. R. Webber, Phys. Lett. B 352, 451 (1995).ADSCrossRefGoogle Scholar
  59. 59.
    N. V. Krasnikov and A. A. Pivovarov, “Renormalization Schemes and Renormalons,” Mod. Phys. Lett. A 11, 835 (1996); “Running Coupling at Small Momenta, Renormalization Schemes and Renormalons,” Phys. Atom. Nucl. 64, 1500 (2001) [Yad. Fiz. 64, 1576 (2001)]; Bubble Chain Resummation and Universality, hep-ph/9512213.ADSCrossRefGoogle Scholar
  60. 60.
    G. Altarelli, P. Nason, and G. Ridolfi, Z. Phys. C 68, 257 (1995).ADSCrossRefGoogle Scholar
  61. 61.
    F. Le Diberder and A. Pich, Phys. Lett. B 286, 147 (1992).ADSCrossRefGoogle Scholar
  62. 62.
    S. Groote, J. G. Korner, and A. A. Pivovarov, “Resummation Analysis of the Tau Decay Width Using the Four Loop Beta Function,” Mod. Phys. Lett. A 13, 637 (1998).ADSCrossRefGoogle Scholar
  63. 63.
    S. Groote, J. G. Korner, and A. A. Pivovarov, “Perturbative Relations Between e + e Annihilation and Tau Decay Observables Including Resummation Effects,” Phys. Lett. B 407, 66 (1997); [hep-ph/9704396].ADSCrossRefGoogle Scholar
  64. 64.
    J. G. Korner, F. Krajewski, and A. A. Pivovarov, “Determination of the Strange Quark Mass from Cabibbo Suppressed Tau Decays with Resummed Perturbation Theory in an Effective Scheme,” Eur. Phys. J. C 20, 259 (2001); [hep-ph/0003165].ADSCrossRefGoogle Scholar
  65. 65.
    K. Maltman, “The Strange Current Quark Mass from ‘Pinched-Weight’ Finite Energy Sum Rules (FESR’s),” Nucl. Phys. A 663, 977 (2000); Phys. Lett. B 462, 195 (1999); Phys. Lett. B 440, 367 (1998).ADSCrossRefGoogle Scholar
  66. 66.
    K. G. Chetyrkin, J. H. Kühn, and A. A. Pivovarov, “Determining the Strange Quark Mass in Cabibbo Suppressed Tau Lepton Decays,” Nucl. Phys. B 533, 473 (1998).ADSCrossRefGoogle Scholar
  67. 67.
    A. Pich and J. Prades, “Perturbative Quark Mass Corrections to the Tau Hadronic Width,” JHEP 9806, 013 (1998); JHEP 9910, 004 (1999).ADSCrossRefGoogle Scholar
  68. 68.
    A. A. Penin and A. A. Pivovarov, “Numerical Analysis of Renormalon Technique in Quantum Mechanics,” Phys. Lett. B 401, 294 (1997); [hep-ph/9612204].ADSCrossRefGoogle Scholar
  69. 69.
    D. V. Shirkov and I. L. Solovtsov, Phys. Rev. Lett. 79, 1209 (1997).ADSCrossRefGoogle Scholar
  70. 70.
    A. P. Bakulev, S. V. Mikhailov, and N. G. Stefanis, “Higher-Order QCD Perturbation Theory in Different Schemes: From FOPT to CIPT to FAPT,” JHEP 1006, 085 (2010); “QCD Analytic Perturbation Theory: From Integer Powers to Any Power of the Running Coupling,” Phys. Rev. D 72, 074014 (2005) [Phys. Rev. D 72, 119908 (2005)]; [hep-ph/0506311].ADSCrossRefGoogle Scholar
  71. 71.
    S. Groote, J. G. Korner, and A. A. Pivovarov, “Spectral Moments of Two Point Correlators in Perturbation Theory and Beyond,” Phys. Rev. D 65, 036001 (2002); A. A. Pivovarov, “Renormalization Group Summation, Spectrality Constraints, and Coupling Constant Analyticity for Phenomenological Applications of Two-Point Correlators in QCD,” Phys. Atom. Nucl. 66, 724 (2003).ADSCrossRefGoogle Scholar
  72. 72.
    D. I. Kazakov, “The Method of Uniqueness, a New Powerful Technique for Multiloop Calculations,” Phys. Lett. B 133, 406 (1983).ADSCrossRefGoogle Scholar
  73. 73.
    D. I. Kazakov and A. V. Kotikov, “The Method of Uniqueness: Multiloop Calculations in QCD,” Theor. Math. Phys. 73, 1264 (1988) [Teor. Mat. Fiz. 73, 348 (1987)].CrossRefGoogle Scholar
  74. 74.
    D. I. Kazakov, O. V. Tarasov, and A. A. Vladimirov, “Calculation of Critical Exponents by Quantum Field Theory Methods,” Sov. Phys. JETP 50, 521 (1979) [Zh. Eksp. Teor. Fiz. 77, 1035 (1979)].ADSGoogle Scholar
  75. 75.
    H. Kleinert et al., “Five Loop Renormalization Group Functions of O(n) Symmetric Phi**4 Theory and Epsilon Expansions of Critical Exponents up to Epsilon**5,” Phys. Lett. B 272, 39 (1991) [Erratum-ibid. B 319, 545 (1993)]; [hep-th/9503230]; S. G. Gorishnii et al., “Five Loop Renormalization Group Calculations in the G Phi**4 in Four-Dimensions Theory,” Phys. Lett. B 132, 351 (1983).ADSCrossRefGoogle Scholar
  76. 76.
    A. I. Davydychev and V. A. Smirnov, Nucl. Phys. B 554, 391 (1999).ADSCrossRefGoogle Scholar
  77. 77.
    A. V. Kotikov, “Differential Equations Method: New Technique for Massive Feynman Diagrams Calculation,” Phys. Lett. B 254, 158 (1991).MathSciNetADSCrossRefGoogle Scholar
  78. 78.
    S. Groote, J. G. Korner, and A. A. Pivovarov, “A New Technique for Computing the Spectral Density of Sunset Type Diagrams: Integral Transformation in Configuration Space,” Phys. Lett. B 443, 269 (1998); [hep-ph/9805224].ADSCrossRefGoogle Scholar
  79. 79.
    M. T. Grisaru, D. I. Kazakov, and D. Zanon, “Five Loop Divergences for the N = 2 Supersymmetric Nonlinear Sigma Model,” Nucl. Phys. B 287, 189 (1987).MathSciNetADSCrossRefGoogle Scholar
  80. 80.
    O. V. Tarasov, A. A. Vladimirov, and A. Y. Zharkov, “The Gell-Mann-Low Function of QCD in the Three Loop Approximation,” Phys. Lett. B 93, 429 (1980).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • S. Groote
    • 1
    • 2
  • J. G. Körner
    • 2
  • A. A. Pivovarov
    • 3
    • 4
  1. 1.Füüsika InstituutTartuEstonia
  2. 2.Institut für Physik der Johannes-Gutenberg-UniversitätMainzGermany
  3. 3.Institute for Nuclear Research of the Russian Academy of SciencesMoscowRussia
  4. 4.Department Physik der Universität SiegenSiegenGermany

Personalised recommendations