Skip to main content
Log in

Background field formalism and construction of effective action for N = 2, d = 3 supersymmetric gauge theories

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

We review the background field method for three-dimensional Yang-Mills and Chern-Simons models in N = 2 superspace. Superfield proper time (heat kernel) techniques are developed and exact expressions of heat kernels for constant backgrounds are presented. The background field method and heat kernel techniques are applied for evaluating the low-energy effective actions in N = 2 supersymmetric Yang-Mills and Chern-Simons models as well as in N = 4 and N = 8 SYM theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. I. Kazakov, “Finite N = 1 SUSY Field Theories and Dimensional Regularization,” Phys. Lett. B. 179, 352 (1986).

    Article  ADS  Google Scholar 

  2. D. I. Kazakov, “Finite N = 1 SUSY Gauge Field Theories,” Mod. Phys. Lett. A. 2, 663 (1987).

    Article  ADS  Google Scholar 

  3. A. V. Ermushev, D. I. Kazakov, and O. V. Tarasov, “Finite N = 1 Supersymmetric Grand Unified Theories,” Nucl. Phys. B 281, 72 (1987).

    Article  ADS  Google Scholar 

  4. L. V. Avdeev, G. V. Grigoryev, and D. I. Kazakov, “Renormalizations in Abelian Chern-Simons Field Theories with Matter,” Nucl. Phys. B 382, 561 (1992).

    Article  MathSciNet  ADS  Google Scholar 

  5. L. V. Avdeev, D. I. Kazakov, and I. N. Kondrashuk, “Renormalizations in Supersymmetric and Nonsupersymmetric Non-Abelian Chern-Simons Field Theories with Matter,” Nucl. Phys. B. 391, 333 (1993).

    Article  MathSciNet  ADS  Google Scholar 

  6. J. Bagger and N. Lambert, “Modeling Multiple M2’s,” Phys. Rev. D 75, 045020 (2007); hep-th/0611108.

    Article  MathSciNet  ADS  Google Scholar 

  7. J. Bagger and N. Lambert, “Gauge Symmetry and Supersymmetry of Multiple M2-Branes,” Phys. Rev. D. 77, 065008 (2008); arxiv:0711.0955.

    Article  MathSciNet  ADS  Google Scholar 

  8. J. Bagger and N. Lambert, “Comments on Multiple M2-Branes,” JHEP 02, 105 (2008); arxiv:0712.3738.

    Article  MathSciNet  ADS  Google Scholar 

  9. J. Bagger and N. Lambert, “Three-Algebras and N = 6 Chern-Simons Gauge Theories,” Phys. Rev. D. 79, 025002 (2009); arxiv:0807.0163.

    Article  MathSciNet  ADS  Google Scholar 

  10. A. Gustavsson, “Algebraic Structures on Parallel M2-Branes,” Nucl. Phys. B. 811, 66 (2009); arxiv:0709.1260.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. A. Gustavsson, “Selfdual Strings and Loop Space Nahm Equations,” JHEP 04, 083 (2008); arxiv:0802.3456.

    Article  MathSciNet  ADS  Google Scholar 

  12. O. Aharony, et al., “N = 6 Superconformal Chern-Simons-Matter Theories, M2-Branes and Their Gravity Duals,” JHEP 10, 091 (2008); arXiv:0806.1218.

    Article  MathSciNet  ADS  Google Scholar 

  13. M. Benna, et al., “Superconformal Chern-Simons Theories and AdS4/CFT3 Correspondence,” JHEP 09, 072 (2008); arxiv:0806.1519.

    Article  MathSciNet  ADS  Google Scholar 

  14. J. A. Minahan and K. Zarembo, “The Bethe Ansatz for Superconformal Chern-Simons,” JHEP 09, 040 (2008); arxiv:0806.3951.

    Article  MathSciNet  ADS  Google Scholar 

  15. D. Gaiotto, S. Giombi, and X. Yin, “Spin Chains in N= 6 Superconformal Chern-Simons-Matter Theory,” JHEP 04, 066 (2009); arxiv:0806.4589.

    Article  MathSciNet  ADS  Google Scholar 

  16. G. Grignani, T. Harmark, and M. Orselli, “The SU(2) × SU(2) Sector in the String Dual of N = 6 Superconformal Chern-Simons Theory,” Nucl. Phys. B. 810, 115 (2009); arxiv:0806.4959.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. N. Gromov and P. Vieira, “The All Loop AdS4/CFT3 Bethe Ansatz,” JHEP 01, 016 (2009); arxiv:0807.0777.

    Article  MathSciNet  ADS  Google Scholar 

  18. N. Gromov and V. Mikhaylov, “Comment on the Scaling Function in AdS4 × CP3,” JHEP 04, 083 (2009); arxiv:0807.4897.

    Article  MathSciNet  ADS  Google Scholar 

  19. D. Bak and S.-J. Rey, “Integrable Spin Chain in Superconformal Chern-Simons Theory,” JHEP 10, 053 (2008); arxiv:0807.2063.

    Article  MathSciNet  ADS  Google Scholar 

  20. J. A. Minahan, W. Schulgin, and K. Zarembo, “Two Loop Integrability for Chern-Simons Theories with N = 6 Supersymmetry,” JHEP 03, 057 (2009); arxiv:0901.1142.

    Article  MathSciNet  ADS  Google Scholar 

  21. D. Bak, D. Gang, and S.-J. Rey, “Integrable Spin Chain of Superconformal U(M)XU(N) Chern-Simons Theory,” JHEP 10, 038 (2008); arxiv:0808.0170.

    Article  MathSciNet  ADS  Google Scholar 

  22. J. A. Minahan, Sax O. Ohlsson, and C. Sieg, “Magnon Dispersion to Four Loops in the ABJM and ABJ Models,” J. Phys. A 43, 275402 (2010); arxiv:0908.2463.

    Article  MathSciNet  ADS  Google Scholar 

  23. J. A. Minahan, Sax O. Ohlsson, and C. Sieg, “Anomalous Dimensions at Four Loops in N = 6 Superconformal Chern-Simons Theories,” Nucl. Phys. B. 846, 542 (2011); arxiv:0912.3460.

    Article  ADS  MATH  Google Scholar 

  24. M. Leoni, et al., “Superspace Calculation of the Four-Loop spectrum in N = 6 Supersymmetric Chern-Simons Theories,” JHEP. 12, 074 (2010); arxiv:1010.1756.

    Article  ADS  Google Scholar 

  25. T. Klose, “Review of AdS/CFT Integrability, Chapter IV.3: N = 6 Chern-Simons and Strings on AdS4xCP3,” Lett. Math. Phys. 99, 401 (2012); arxiv:1012.3999.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. I. Chepelev and A. A. Tseytlin, “Long Distance Interactions of Branes: Correspondence between Supergravity and SuperYang-Mills Descriptions,” Nucl. Phys. B 515, 73 (1998); hep-th/9709087.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. J. M. Maldacena, “Branes Probing Black Holes,” Nucl. Phys. Proc. Suppl. 68, 17 (1998); hepth/9709099.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. A. A. Tseytlin, “Born-Infeld Action, Supersymmetry and String Theory,” hep-th/9908105.

  29. I. L. Buchbinder, S. M. Kuzenko, and A. A. Tseytlin, “On Low-Energy Effective Actions in N = 2, N = 4 Superconformal Theories in Four-Dimensions,” Phys. Rev. D 62, 045001 (2000); hep-th/9911221.

    Article  MathSciNet  ADS  Google Scholar 

  30. S. M. Kuzenko and I. N. McArthur, “Relaxed Super-selfduality and Effective Action,” Phys. Lett. B 591, 304 (2004); hep-th/0403082.

    Article  ADS  Google Scholar 

  31. S. M. Kuzenko and I. N. McArthur, “Relaxed Super-selfduality and N = 4 SYM at Two Loops,” Nucl. Phys. B. 697, 89 (2004); hep-th/0403240.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. S. M. Kuzenko, “Self-Dual Effective Action of N = 4 SYM Revisited,” JHEP 03, 008 (2005); hepth/0410128.

    Article  ADS  Google Scholar 

  33. S. Deser, R. Jackiw, and S. Templeton, “Three-Dimensional Massive Gauge Theories,” Phys. Rev. Lett. 48, 975 (1982).

    Article  ADS  Google Scholar 

  34. S. Deser, R. Jackiw, and S. Templeton, “Topologically Massive Gauge Theories,” Annals Phys. 140, 372 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  35. S. Deser and J. H. Kay, “Topologically Massive Supergravity,” Phys. Lett. B. 120, 97 (1983).

    Article  ADS  Google Scholar 

  36. E. Witten, “Quantum Field Theory and the Jones Polynomial,” Commun. Math. Phys. 121, 351 (1989).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. R. D. Pisarski and S. Rao, “Topologically Massive Chromodynamics in the Perturbative Regime,” Phys. Rev. D. 32, 2081 (1985).

    Article  ADS  Google Scholar 

  38. W. Chen, G. W. Semenoff, and Y.-S. Wu, “Probing Topological Features in Perturbative Chern-Simons Gauge Theory,” Mod. Phys. Lett. A. 5, 1833 (1990).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. W. Chen, G. W. Semenoff, and Y.-S. Wu, “Two Loop Analysis of Non-Abelian Chern-Simons Theory,” Phys. Rev. D. 46, 5521 (1992); hep-th/9209005.

    Article  MathSciNet  ADS  Google Scholar 

  40. C. P. Martin, “Dimensional Regularization of Chern-Simons Field Theory,” Phys. Lett. B. 241, 513 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  41. G. Giavarini, C. P. Martin, and F. Ruiz Ruiz, “Chern-Simons Theory as the Large Mass Limit of Topologically Massive Yang-Mills Theory,” Nucl. Phys. B. 381, 222 (1992); hep-th/9206007.

    Article  MathSciNet  ADS  Google Scholar 

  42. A. N. Kapustin and P. I. Pronin, “Nonrenormalization Theorem for Gauge Coupling in (2+1)-Dimensions,” Mod. Phys. Lett. A. 9, 1925 (1994); hep-th/9401053.

    Article  ADS  Google Scholar 

  43. G. V. Dunne, Aspects of Chern-Simons Theory; hepth/9902115.

  44. I. L. Buchbinder, et al., “Quantum N = 3, D = 3 Chern-Simons Matter Theories in Harmonic Superspace,” JHEP 10, 075 (2009); arXiv:0909.2970.

    Article  MathSciNet  ADS  Google Scholar 

  45. M. S. Bianchi and S. Penati, “The Conformal Manifold of Chern-Simons Matter Theories,” JHEP 01, 047 (2011); arXiv:1009.6223.

    Article  MathSciNet  ADS  Google Scholar 

  46. M. S. Bianchi, S. Penati, and M. Siani, “Infrared Stability of N = 2 Chern-Simons Matter Theories,” JHEP 05, 106 (2010); arXiv:0912.4282.

    Article  MathSciNet  ADS  Google Scholar 

  47. M. S. Bianchi, S. Penati, and M. Siani, “Infrared Stability of ABJ-like Theories,” JHEP. 01, 080 (2010); arXiv:0910.5200.

    Article  ADS  Google Scholar 

  48. B. S. DeWitt, “Quantum Theory of Gravity. 2. The Manifestly Covariant Theory,” Phys. Rev. 162, 1195 (1967).

    Article  ADS  MATH  Google Scholar 

  49. R. Kallosh, “The Renormalization in Nonabelean Gauge Theories,” Nucl. Phys. B. 78, 293 (1974).

    Article  MathSciNet  ADS  Google Scholar 

  50. I. Ya. Arefeva, L. D. Faddeev, and A. A. Slavnov, “Generating Functional for the S-Matrix in Gauge Theories,” Theor. and Math. Phys. 21 1165 (1975).

    Article  ADS  Google Scholar 

  51. M. T. Grisaru, P. van Nieuwenhuizen, and C. C. Wu, “Background Field Method Versus Normal Field Theory in Explicit Examples: One-Loop Divergences in the S-Matrix and Green’s Functions for Yang-Mills and Gravitational Fields,” Phys. Rev. D. 12, 3203 (1975).

    Article  ADS  Google Scholar 

  52. L. F. Abbott, “Introduction to the Background Field Method,” Acta Physica Polonica. B. 13, 33 (1975).

    MathSciNet  Google Scholar 

  53. G. A. Vilkovisky, “The Unique Effective Action in Quantum Field Theory,” Nucl. Phys. B. 234, 125 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  54. M. T. Grisaru and W. Siegel, “Improved Methods for Supergraphs,” Nucl. Phys. B. 159, 429 (1979); “Supergraphity. Part 1. Background Field Formalism,” Nucl. Phys. B. 187, 149 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  55. I. L. Buchbinder, et al., “The Background Field Method for N =2 Super Yang-Mills Theories in Harmonic Superspace,” Phys. Lett. B. 417, 61 (1998); hepth/9704214.

    Article  MathSciNet  ADS  Google Scholar 

  56. S. Mukhi and C. Papageorgakis, “M2 to D2,” JHEP 05, 085 (2008); arXiv:0803.3218.

    Article  MathSciNet  ADS  Google Scholar 

  57. U. Gran, B. E. W. Nilsson, and C. Petersson, “On Relating Multiple M2 and D2-Branes,” JHEP 10, 067 (2008); arXiv:0804.1784.

    Article  MathSciNet  ADS  Google Scholar 

  58. P.-M. Ho, Y. Imamura, and Y. Matsuo, “M2 to D2 Revisited,” JHEP 07, 003 (2008); arXiv:0805.1202.

    Article  MathSciNet  ADS  Google Scholar 

  59. T. Li, Y. Liu, and D. Xie, “Multiple D2-Brane Action from M2-Branes,” Int. J. Mod. Phys. A. 24, 3039 (2009); arXiv:0807.1183.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  60. Y. Pang and T. Wang, “From N M2’s to N D2’s,” Phys. Rev. D. 78, 125007 (2008); arXiv:0807.1444.

    Article  MathSciNet  ADS  Google Scholar 

  61. B. Ezhuthachan, S. Mukhi, and C. Papageorgakis, “D2 To D2,” JHEP 07, 041 (2008); arXiv:0806.1639.

    Article  MathSciNet  ADS  Google Scholar 

  62. B. Ezhuthachan, S. Mukhi, and C. Papageorgakis, “The Power of the Higgs Mechanism: Higher-Derivative BLG Theories,” JHEP 04, 101 (2009); arXiv:0903.0003.

    Article  ADS  Google Scholar 

  63. I. L. Buchbinder, et al., “ABJM Models in N = 3 Harmonic Superspace,” JHEP 03, 096 (2003); arXiv: 0811.4774.

    ADS  Google Scholar 

  64. I. L. Buchbinder, N. G. Pletnev, and I. B. Samsonov, “Low-Energy Effective Actions in Three-Dimensional Extended SYM Theories,” JHEP 01, 121 (2011); arXiv:1010.4967.

    Article  ADS  Google Scholar 

  65. I. L. Buchbinder, N. G. Pletnev, and I. B. Samsonov, “Effective Action of Three-Dimensional Extended Supersymmetric Matter on Gauge Superfield Background,” JHEP 04, 124 (2010); arXiv:1003.4806.

    Article  MathSciNet  ADS  Google Scholar 

  66. I. L. Buchbinder and N. G. Pletnev, “The Background Field Method for N = 2, d3 Super Chern-Simons-Matter Theories,” JHEP 11, 085 (2011); arxiv:1108.2966.

    MathSciNet  Google Scholar 

  67. N. J. Hitchin, et al., “Hyperkahler Metrics and Supersymmetry,” Comm. Math. Phys. 108, 535 (1987).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  68. B. M. Zupnik and D. G. Pak, “Superfield Formulation of the Simplest Three-Dimensional Gauge Theories and Conformal Supergravities,” Theor. Math. Phys. 77, 1070 (1988).

    Article  MathSciNet  Google Scholar 

  69. B. M. Zupnik and D. G. Pak, “Topologically Massive Gauge Theories in Superspace,” Sov. Phys. J. 31, 962 (1988).

    Article  Google Scholar 

  70. E. A. Ivanov, “Chern-Simons Matter Systems with Manifest N = 2 Supersymmetry,” Phys. Lett. B 268, 203 (1991).

    Article  MathSciNet  ADS  Google Scholar 

  71. S. J. Gates, Jr. and H. Nishino, “Remarks on the N = 2 Supersymmetric Chern-Simons Theories,” Phys. Lett. B 281, 72 (1992).

    Article  MathSciNet  ADS  Google Scholar 

  72. H. Nishino and S. J. Gates, Jr., “Chern-Simons Theories with Supersymmetries in Three-Dimensions,” Int. J. Mod. Phys. A. 8, 3371 (1993).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  73. H.-C. Kao and K.-M. Lee, “Selfdual Chern-Simons Systems with an N = 3 Extended Supersymmetry,” Phys. Rev. D. 46, 4691 (1992); hep-th/9205115.

    Article  MathSciNet  ADS  Google Scholar 

  74. H.-C. Kao, “Selfdual Yang-Mills Chern-Simons Higgs Systems with an N = 3 Extended Supersymmetry,” Phys. Rev. D. 50, 2881 (1994).

    Article  MathSciNet  ADS  Google Scholar 

  75. A. J. Niemi and G. W. Semenoff, “Axial-Anomaly-Induced Fermion Fractionization and Effective Gauge-Theory Actions in Odd-Dimensional Space-Times,” Phys. Rev. Lett. 51, 2077 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  76. A. N. Redlich, “Gauge Noninvariance and Parity Violation of Three-Dimensional Fermions,” Phys. Rev. Lett. 52, 18 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  77. A. N. Redlich, “Parity Violation and Gauge Noninvariance of the Effective Gauge Field Action in Three Dimensions,” Phys. Rev. D. 29, 2366 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  78. J. de Boer, K. Hori, and Y. Oz, “Dynamics of N = 2 Supersymmetric Gauge Theories in Three-Dimensions,” Nucl. Phys. B. 500, 163 (1997); hepth/9703100.

    Article  ADS  MATH  Google Scholar 

  79. J. de Boer, et al., “Branes and Mirror Symmetry in N = 2 Supersymmetric Gauge Theories in Three-Dimensions,” Nucl. Phys. B. 502, 107 (1997); hepth/9702154.

    Article  ADS  MATH  Google Scholar 

  80. A. T. Banin, I. L. Buchbinder, and N. G. Pletnev, “On Low-Energy Effective Action in N = 2 Super Yang-Mills Theories on Non-Abelian Background,” Phys. Rev. D. 66, 045021 (2002).

    Article  ADS  Google Scholar 

  81. B. A. Ovrut and J. Wess, “Supersymmetric R ξ Gauge and Radiative Symmetry Breaking,” Phys. Rev. D. 25, 409 (1982).

    Article  ADS  Google Scholar 

  82. P. Binetruy, P. Sorba, and R. Stora, “Supersymmetric S-Covariant R ξ Gauge,” Phys. Lett. B. 129, 85 (1983).

    Article  ADS  Google Scholar 

  83. U. Lindström and M. Roček, “Scalar Tensor Duality and N = 1,2 Non-Linear σ-Models,” Nucl. Phys. B. 222, 285 (1983).

    Article  ADS  Google Scholar 

  84. E. Koh, S. Lee, and S. Lee, “Topological Chern-Simons σ-Model,” JHEP 09, 122 (2009); arXiv:0907.1641.

    Article  MathSciNet  ADS  Google Scholar 

  85. D. Gaiotto and E. Witten, “Janus Configurations, Chern-Simons Couplings, and the Theta-Angle in N = 4 Super Yang-Mills Theory,” JHEP 06, 097 (2010); arXiv:0804.2907.

    Article  MathSciNet  ADS  Google Scholar 

  86. M. Dine and N. Seiberg, “Comments on Higher Derivative Operators in Some SUSY Field Theories,” Phys. Lett. B. 409, 239 (1997); hep-th/9705057..

    Article  MathSciNet  ADS  Google Scholar 

  87. H.-C. Kao, K.-M. Lee, and T. Lee, “The Chern-Simons Coefficient in Supersymmetric Yang-Mills Chern-Simons Theories,” Phys. Lett. B. 373, 94 (1996).

    Article  MathSciNet  Google Scholar 

  88. I. L. Buchbinder and S. M. Kuzenko, “Ideas and Methods of Supersymmetry and Supergravity,” IOP Publishing Bristol and Philadelphia (1998).

    Google Scholar 

  89. D. Birmingham, et al., “Topological Field Theory,” Phys. Rep. 209, 129 (1991).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. L. Buchbinder.

Additional information

Dedicated to the 60 year Jubilee of Professor D.I. Kazakov

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buchbinder, I.L., Pletnev, N.G. & Samsonov, I.B. Background field formalism and construction of effective action for N = 2, d = 3 supersymmetric gauge theories. Phys. Part. Nuclei 44, 234–249 (2013). https://doi.org/10.1134/S1063779613020093

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779613020093

Keywords

Navigation