Skip to main content
Log in

Study of the neutron flux generated at E-linac-driven neutron sources

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

We treat generic physical features of the production of neutrons from the high atomic number materials irradiated by the electron beam provided by linear electron accelerator. The bremsstrahlung of incident electrons inducing the photo-nuclear reactions is considered. The experimental data on photo-nuclear reactions are utilized to describe neutrons generating caused by the γ-radiation absorption. The generally received theoretical approaches are applied to explore the photo-neutrons energy distribution. The produced neutrons are primarily statistical, yet the direct neutrons share is noteworthy as well. The dependence of the neutron spectrum, mean neutron energy and total neutron yield on the energy and current of the electron beam and on the characteristics of irradiated samples is investigated. The analysis is plainly carried out in framework of the quantum electrodynamics and photo-nuclear physics, without having any recourse to the “numerical Monte-Carlo simulations”. Our findings prove mainly to conform satisfactorily to the experimental measurements, so far as those are available for now.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. H. Bockoff, “Properties of Neutron Sources,” in Proceedings of Advisory Group Meeting on Properties of Neutron Sources, Leningrad, USSR, 1986 (IAEA-TEC-DOC-410, Vienne, 1987), pp. 35–55; K. H. Bockoff, “Isotope Production and Application in the 21st Century,” in Proceedings of the Third Internal Conference on Isotopes, Vancouver, Canada, 1999 (World Sci., Vancouver, 2000).

    Google Scholar 

  2. Y. Gohar, J. Bailey, H. Belch, D. Naberezhnev, P. Strons, and I. Bolshinsky, “Accelerator Driven Subcritical Assembly; Concept Development and Analyses,” in Proceedings of the RERTR-2004 International Meeting, Vienna, Austria, 2004.

  3. G. G. Bunatian, V. G. Nikolenko, and A. B. Popov, JINR Commun., Report E-2010-144 (Joint Inst. Nucl. Res., Dubna, 2011).

    Google Scholar 

  4. A. I. Akhiezer and V. B. Berestetskii, Quantum Electrodynamics (Fizmatgiz, Moscow, 1959) [in Russian].

    Google Scholar 

  5. W. Heitler, The Quantum Theory of Radiation (Clarendon, Oxford, 1954).

    MATH  Google Scholar 

  6. V. B. Berestetskii, E. M. Lifshits, and L. P. Pitaevskii, Relativistic Quantum Theory (Nauka, Moscow, 1964; Pergamon, Oxford, 1971).

    Google Scholar 

  7. L. I. Shiff, Phys. Rev. 83, 252 (1951).

    Article  ADS  Google Scholar 

  8. H. Bethe and W. Heitler, Proc. Roy. Soc. A 146, 83 (1934).

    Article  ADS  Google Scholar 

  9. Nuclear Handbook, Ed. by O. R. Frisch (George Newnes, London, 1958); The Tables of Physical Quantities, Ed. by I. K. Kikoin (Atomizdat, Moscow, 1976) [in Russian].

    Google Scholar 

  10. J. T. Caldwell, E. J. Dowdy, B. L. Berman, R. A. Avarez, and P. Meyer, Phys. Rev. C: Nucl. Phys. 21, 1215 (1980); A.Veyssiere, H. Beil, P. Carlos, A. Leprêtre, and K. Kernbath, Nucl. Phys. A 199, 45 (1973); J. D. T. Arruda Neto, S. B. Herdade, B. S. Bhandari, and I. C. Nascimento, Phys. Rev. C: Nucl. Phys. 14, 1499 (1976); H. Ries, G. Mank, J. Drexler, R. Heil, K. Huber, U. Kneissl, R. Ratzek, H. Ströher, T. Weber, and W. Wilke, Phys. Rev. C: Nucl. Phys. 29, 2346 (1984).

    Article  ADS  Google Scholar 

  11. H. Bergere, H. Beil, and A. Veyssiere, Nucl. Phys. A 121, 463 (1968); R. L. Bramblett, J. T. Caldwell, G. F. Auchampaugh, and S. C. Fultz, Phys. Rev. 120, 2723 (1963).

    Article  ADS  Google Scholar 

  12. B. I. Goryachev, V. S. Ishkhanov, I. M. Kapitonov, and V. G. Shevchenko, J. Exp. Theor. Phys. Lett. 7, 161–162 (1968); B. S. Ishkhanov, et al., J. Nucl. Phys. 12, 628 (1970); E. G. Fuller and E. Hayward, Nucl. Phys. 33, 431 (1962); A. Veyssiere, H. Beil, R. Bergere, P. Carlos, and A. Leprétre, Nucl. Phys. A 159, 561 (1970).

    Google Scholar 

  13. D. H. Wilkinson, Ann. Rev. Nucl. Sci. 9, 1 (1951); G. E. Brown and M. Bolsterli, Phys. Rev. Lett. 3, 472 (1959); F. T. Kuchnir, P. Axel, L. Criegee, D. M. Drake, A. O. Hanson, and D. C. Sutton, Phys. Rev. 161, 1236 (1967); J. J. Griffin, Phys. Rev. Lett. 17, 478 (1966); J. Rawlins, C. Glavina, S. H. Ku, and Y. M. Shin, Nucl. Phys. A 122, 625 (1968).

    Article  ADS  Google Scholar 

  14. J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics (Wiley, New York, 1952); B. L. Berman and S. C. Fultz, Rev. Mod. Phys. 47, 739 (1975).

    MATH  Google Scholar 

  15. A. Veyssiere, R. Bergere, and H. Beil, Nucl. Phys. A 121, 463 (1968); A. Veyssiere, H. Beil, R. Bergere, P. Carlos, and A. Leprêtre, Nucl. Phys. A 159, 561 (1970).

    Article  ADS  Google Scholar 

  16. R. F. Barret, J. R. Birkelund, B. J. Thomas, K. S. Lam, and H. H. Thies, Nucl. Phys. A 210, 355 (1973).

    Article  ADS  Google Scholar 

  17. J. C. Lui, W. R. Nelson, K. R. Kase, and X. S. Mao, Radiat. Prot. Dosim. 70, 49 (1997).

    Article  Google Scholar 

  18. RIPL-2(Level Density Segment), IAEA Nuclear Data Services, www-nds.IAEA.org

  19. F.T. Kuchnir, P. Axel, L. Criegee, D. M. Drake, A. Ö. Hanson, and D. C. Sutton, Phys. Rev. 161, 1236 (1967).

    Article  ADS  Google Scholar 

  20. G. A. Price, Phys. Rev. 93, 1279 (1953).

    Article  ADS  Google Scholar 

  21. S. Katcoff, Nucleonics 18, 201 (1960); Yu. A. Ziskin, A. A. Lbov, and L. I. Sel’genkov, Fission Products and Their Mass Distributions (Gosatomizdat, Moscow, 1963) [in Russian]; Yu. P. Gangrsky, B. N. Markov, and V. P. Pereligin, Fission Fragments, Registration and Spectrometry (Energoatomizdat, Moscow, 1992) [in Russian].

    Google Scholar 

  22. The Nuclear Fission Proceedings, Ed. by C. Wagemans (CRC, Rafon, 1991).

    Google Scholar 

  23. S. Levinger, Phys. Lett. B 82, 181 (1979); J. M. Laget, Nucl. Phys. A 358, 275 (1981); M. Ericson and M. Rosa-Clot, Z. Phys. A 324, 373 (1991); A. Baumann, E Rullhusen, K. W. Rose, M. Schumacher, J. M. Henneberg, N. Wieloch-Laufenberg, and B. Ziegler, Phys. Rev. C: Nucl. Phys. 38, 1940 (1988); E. Hayward, Phys. Rev. C: Nucl. Phys. 40, 467 (1989).

    Article  ADS  Google Scholar 

  24. A. Leprêtre, R. Bergére, P. Bourgeois, P. Carlos, J. Fagot, J. L. Fallou, P. Garganne, A. Veyssiere, H. Ries, R. Gobel, U. Kneissl, G. Mank, H. Ströher, W. Wilke, D. Ryckbosch, and J. Jury, Nucl. Phys. A 472, 533 (1987).

    Article  ADS  Google Scholar 

  25. D. Ryckbosch, P. Carlos, and A. Leprétre, Z. Phys. A 329, 451 (1988).

    ADS  Google Scholar 

  26. A. Leprêtre, H. Beil, R. Bergere, P. Carlos, J. Fagot, A. De Miniac, and A. Veyssiere, Nucl. Phys. A 367, 237 (1981).

    Article  ADS  Google Scholar 

  27. A. Leprêtre, H. Beil, R. Bergere, P. Carlos, J. Fagot, A. Veyssiere, and I. Halpern, Nucl. Phys. A 390, 221 (1982).

    Article  ADS  Google Scholar 

  28. A. Leprêtre, H. Beil, R. Bergere, P. Carlos, J. Fagot, and A. Veyssiere, Nucl. Phys. A 390, 240 (1982).

    Article  ADS  Google Scholar 

  29. M. Blann, B. L. Berman, and T. T. Komoto, Phys. Rev. C: Nucl. Phys. 28, 2286 (1983).

    Article  ADS  Google Scholar 

  30. Nuclear Data Tables, Vol. 9, Nos. 4–5 (1971).

    Google Scholar 

  31. G. Audi, O. Bersillon, J. Blachot, and A. H. Wapstra, Nucl. Phys. A 729, 3 (2003); D. G. Mandel, Nucl. Phys. A 772, 113 (2006); P. Moller, B. Pfeifer, and K.-L. Kratz, Phys. Rev. C: Nucl. Phys. 67, 055802 (2003).

    Article  ADS  Google Scholar 

  32. M. Fluska, D. Lathouwers, A. J. M. Plompen, W. Mondelaers, T. H. J. J. van der Hagen, and H. van Dam, Nucl. Instrum. Methods Phys. Res., Sect. A 555, 329 (2005).

    Article  ADS  Google Scholar 

  33. M. Fluska, A. Borella, D. Lathouwers, L. C. Mihailescu, W. Mondelaers, A. J. M. Plompen, H. van Dam, and T. H. J. J. van der Hagen, Nucl. Instrum. Methods Phys. Res., Sect. A 531, 392 (2004).

    Article  ADS  Google Scholar 

  34. D. Ene, C. Borcea, S. Kopecky, W. Mondelaers, A. Negret, and A. J. M. Plompen, Nucl. Instrum. Methods Phys. Res., Sect. A 618, 54 (2010).

    Article  ADS  Google Scholar 

  35. M. Fluska, in Proceedings of the Enlargement Workshop on NEMEA, Budapest, Hungary, 2003, Ed. by A. J. M. Plompen, p. 103.

  36. D. Rochman, A. J. Koning and S. C. van der Marck, Ann. Nucl. Eng. 36, 810 (2009); A. J. Koning and M. C. Duijvestijn, Nucl. Phys. A 744, 15 (2004).

    Article  Google Scholar 

  37. P. E. Koehler, H. D. Knox, D. A. Resler, R. O. Lane, and D. J. Millener, Nucl. Phys. A 294, 221 (1983); S. G. Glendinning, S. El-Kadi, C. E. Nelson, R. S. Pedroni, F. O. Purser, and R. L. Walter, Nucl. Sci. Eng. 80, 256 (1982); Handbook for Calibration of Nuclear Reaction Data: Reference Input Parameters Library, IAEA-TECDOC-1034 (1998).

    Article  ADS  Google Scholar 

  38. Yu. A. Khokhlov and M. V. Savin, in Proceedings of the VI School on Neutron Physics, Alushta, USSR, 1990, Ed. by M. U. Zarubina (Joint Inst. Nucl. Res., Dubna, 1991), p. 75.

    Google Scholar 

  39. C. E. Burgart, E. A. Straker, T. A. Love, and R. M. Freestone, Jr., Nucl. Sci. Eng. 42, 421 (1970); R. G. Alsmiller, T. A. Gabriel, and M. P. Guthrie, Nucl. Sci. Eng. 40, 365 (1970).

    Google Scholar 

  40. V. D. Nguyen, K. K. Pham, D. T. Tran, V. D. Phung, Y. S. Lee, H.-S. Lee, M.-H. Cho, I. S. Ko, W. Namkung, A. K. M. M. H. Meaze, K. Devan, and G. Kim, J. Korean Phys. Soc. 48, 382 (2006); G.N.Kim, V. Kovalchuk, Y. S. Lee, V. Skoy, M. H. Cho, I. S. Ko, W. Namkung, D. W. Lee, H. D. Kim, S. K. Ko, S. H. Park, D. S. Kim, T. I. Ro, and Y. G. Min, Nucl. Instrum. Methods Phys. Res., Sect. A 485, 458 (2002).

    Google Scholar 

  41. R. C. McCall, T. M. Jenkins, and R. A. Shore, SLAC-PUB-2214 (1978); R. C. McCall and W. P. Swanson, SLAC-PUB-2292 (1979).

  42. W. P. Swanson, “IAEA TR,” Technical Report Ser. No. 188 (Int. At. Energy Agency, Vienna, 1979).

    Google Scholar 

  43. H.-B. Xu, X.-K. Peng, and C.-B. Chen, Chin. Phys. B 19, 062901 (2010).

    Article  ADS  Google Scholar 

  44. J. Klug, E. Altstadt, C. Beckert, R. Beyer, H. Freiesleben, V. Galindo, E. Grosse, A.R. Junghans, D. Légrády, B. Naumann, K. Noack, G. Rusev, K. D. Schilling, R. Schlenk, S. Schneider, A. Wagner, and F.-P. Weiss, Nucl. Instrum. Methods Phys. Res., Sect. A 577, 641 (2007).

    Article  ADS  Google Scholar 

  45. E. Altstadt, C. Beckert, H. Freiesleben, V. Galindo, E. Grosse, A. R. Junghans, J. Klug, B. Naumann, S. Schneider, R. Schlenk, A. Wagner, and F.-P. Weiss, Ann. Nucl. Energy, 34, 36 (2007).

    Article  Google Scholar 

  46. M. Fluska, et al., in Proceedings of Nuclear Mathematical and Computational Sciences: A Century in Review, A Century Anew, Gatlinburg, Tennessee, 2003 (Am. Nucl. Soc., La Grange Park, 2003), p. 1/11.

    Google Scholar 

  47. B. Nordell, Nucl. Instrum. Methods Phys. Res. 224, 547 (1984).

    Article  ADS  Google Scholar 

  48. M. A. Reda and J. F. Harmon, Adv. X-Ray Anal. 47, 212 (2004).

    Google Scholar 

  49. S. A. Badikov, C. Zhenpeng, A. D. Carlson, E. V. Gai, G. M. Hale, F.-J. Hambsch, H. M. Hofmann, T. Kawano, N. M. Larson, V. G. Pronyaev, D. L. Smith, S.-Y. Oh, S. Tagesen, and H. Vonach, “International Evaluation of Neutron Cross-Section Standards,” IAEA Technical Report No. 1291 (2006).

  50. G. Audi, O. Bersillon, J. Blachot and A. H. Wapstra, Nucl. Phys. A 729, 3 (2003); D. G. Mandel, Nucl. Phys. A 772, 113 (2006); P. Moller, B. Pfeffer, and K.-L. Krast, Phys. Rev. C: Nucl. Phys. 67, 055802 (2003).

    Article  ADS  Google Scholar 

  51. F. H. Frohner, Nucl. Sci. Eng. 103, 31 (1988).

    Google Scholar 

  52. T. Ryves, J. Phys. G: Nucl. Phys. 6, 771 (1980); J. Frehaut, A. Bertin, and R. Bois, Nucl. Sci. Eng. 74, 29 (1980).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Bunatian.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bunatian, G.G. Study of the neutron flux generated at E-linac-driven neutron sources. Phys. Part. Nuclei 43, 867–881 (2012). https://doi.org/10.1134/S1063779612060020

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779612060020

Keywords

Navigation