Physics of Particles and Nuclei

, Volume 43, Issue 5, pp 577–582 | Cite as

Action-angle variables and novel superintegrable systems

  • T. Hakobyan
  • O. Lechtenfeld
  • A. Nersessian
  • A. Saghatelian
  • V. Yeghikyan
Article

Abstract

In this paper we demonstrate the effectiveness of the action-angle variables in the study of superintegrable systems. As an example, we construct the spherical and pseu-dospherical generalizations of the two-dimensional superintegrable models introduced by Tremblay, Turbiner and Winternitz and by Post and Winternitz.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. I. Arnold, Mathematical Methods in Classical Mechanics (Nauka, Moscow, 1973; Springer, Berlin, 1978) [in Russian].Google Scholar
  2. 2.
    F. Calogero, “Solution of a Three-Body Problem in One-Dimension,” J. Math. Phys. 10, 2191 (1969); F. Calogero, “Solution of the One-Dimensional N Body Problems with Quadratic and/or Inversely Quadratic Pair Potentials,” J. Math. Phys. 12, 419 (1971).MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    S. N. M. Ruijsenaars, “Action Angle Maps and Scattering Theory for Some Finite Dimensional Integrable Systems. 1. The Pure Soliton Case,” Commun. Math. Phys. 115, 127 (1988); S. N. M. Ruijsenaars, “Action Angle Maps and Scattering Theory for Some Finite Dimensional Integrable Systems. 2: Solitons, Anti-Solitons, and Their Bound States,” Publ. Res. Inst. Math. Sci. Kyoto 30, 865 (1994); T. Brzezinski, C. Gonera, P. Kosinski, and P. Maslanka, “A Note on the Action Angle Variables for the Rational Calogero-Moser System,” Phys. Lett. A 268, 178 (2000). arXiv:hepth/9912068MathSciNetADSMATHCrossRefGoogle Scholar
  4. 4.
    O. Lechtenfeld, A. Nersessian, and V. Yeghikyan, “Action-Angle Variables for Dihedral Systems on the Circle,” Phys. Lett. A 374, 4647 (2010). arXiv:1005.0464MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    S. Bellucci, A. Nersessian, A. Saghatelian, and V. Yeghikyan, “Quantum Ring Models and Action-Angle Variables,” J. Comp. Theor. Nanosci. 8, 769 (2011). arXiv:1008.3865CrossRefGoogle Scholar
  6. 6.
    E. Schrödinger, “Method of Determining Quantum-Mechanical Eigenvalues and Eigenfunctions,” Proc. Roy. Irish Soc. 46, 9 (1941); E. Schrödinger, “Further Studies on Solving Eigenvalue Problems by Factorization,” Proc. Roy. Irish Soc. 46, 183 (1941).Google Scholar
  7. 7.
    P. W. Higgs, “Dynamical Symmetries in a Spherical Geometry.1,” J. Phys. A 12, 309 (1979); H. I. Leemon, “Dynamical Symmetries in a Spherical Geometry. 2,” J. Phys. A 12, 489 (1979).MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    T. Hakobyan, O. Lechtenfeld, A. Nersessian, A. Saghatelian, and V. Yeghikyan, “Integrable Generalizations of Oscillator and Coulomb Systems via Action-Angle Variables,” Phys. Lett. A 376, 679–686 (2011). arXiv:1108.5189MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    A. Galajinsky and A. Nersessian, “Conformal Mechanics Inspired by Extremal Black Holes in d = 4,” J. High Energy Phys. 1111, 135 (2011). arXiv:1108.3394ADSCrossRefGoogle Scholar
  10. 10.
    S. Bellucci, A. Nersessian, and V. Yeghikyan, “Action-Angle Variables for the Particle near Extreme Kerr Throat.” arXiv:1112.4713Google Scholar
  11. 11.
    P. K. Ghosh, “Super-Calogero-Moser-Sutherland Systems and Free Super-Oscillators: A Mapping,” Nucl. Phys. B 595, 519 (2001). arXiv:hep-th/0007208; T. Brzezinski, C. Gonera, and P. Maslanka, “On the Equivalence of the Rational Calogero-Moser System to Free Particles,” Phys. Lett. A 254, 185 (1999). arXiv:hep-th/9810176; A. Galajinsky, O. Lechtenfeld, and K. Polovnikov, “Calogero Models and Nonlocal Conformal Transformations,” Phys. Lett. B 643, 221 (2006). arXiv:hep-th/0607215; A. Galajinsky, O. Lechtenfeld, and K. Polovnikov, “N = 4 Superconformal Calogero Models,” J. High Energy Phys. 0711, 008 (2007). arXiv:0708.1075ADSMATHCrossRefGoogle Scholar
  12. 12.
    F. Tremblay, A. V. Turbiner, and P. Winternitz, “An Infinite Family of Solvable and Integrable Quantum Systems on a Plane,” J. Phys. A 42, 242001 (2009). arXiv:0904.0738; F. Tremblay, A. V. Turbiner, and P. Winternitz, “Periodic Orbits for an Infinite Family of Classical Superintegrable Systems,” J. Phys. A 43, 015202 (2010). arXiv:0910.0299MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    S. Post and P. Winternitz, “An Infinite Family of Superintegrable Deformations of the Coulomb Potential,” J. Phys. A 43, 222001 (2010). arXiv:1003.5230MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    V. N. Shander, “Darboux and Liuville Theorem on Supermanifolds,” Dokl. Akad. Nauk Bulgaria 36, 309 (1983).MathSciNetMATHGoogle Scholar
  15. 15.
    O. M. Khudaverdian and A. P. Nersessian, “Formulation of Hamiltonian Mechanics with Even and Odd Poisson Brackets,” Preprint EFI-1031-81-87-YEREVAN (Yerevan Phys. Inst., Yerevan, 1988).Google Scholar
  16. 16.
    A. Galajinsky and K. Orekhov, “N = 2 Superparticle Near Horizon of Extreme Kerr-Newman-AdS-dS Black Hole,” Nucl. Phys. B 850, 339 (2011). arXiv:1103.1047MathSciNetADSMATHCrossRefGoogle Scholar
  17. 17.
    S. Flügge, Practical Quantum Mechanics 1 (Springer, Berlin, 1971).CrossRefGoogle Scholar
  18. 18.
    C. Gonera, “Note on Superintegrability of TTW model.” arXiv:1010.2915.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • T. Hakobyan
    • 1
  • O. Lechtenfeld
    • 2
  • A. Nersessian
    • 1
  • A. Saghatelian
    • 1
  • V. Yeghikyan
    • 1
    • 3
  1. 1.Yerevan State UniversityYerevanArmenia
  2. 2.Leibniz Universitat HannoverHannoverGermany
  3. 3.INFN-Laboratori Nazionali di FrascatiFrascatiItaly

Personalised recommendations