Skip to main content
Log in

Methods of optical diagnostics of electron-positron beams and interaction between plasma and high-current electron beam

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

Optical diagnostics is widely used, both in plasma-physics experiments and in measuring parameters of electron and positron beams in accelerators. In doing so, the approaches with the same methodological base are often applied, which is explained by similarity of certain properties of objects under study despite the fact that these fields of physics are absolutely specific and require using the specialized techniques. The possibility of close contacts and cooperation among scientists concerned with similar problems in different fields of physics contributes to the fruitful exchange of ideas and helps to overcome these problems. It is especially characteristic of the Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, which is famous for pioneering works in the field of electron-positron colliders and controlled thermonuclear fusion. The first part of this paper presents a review of optical diagnostics of the stationary beam parameters in cyclic accelerators of electrons and positrons. The only techniques considered are those that became the recognized tools at colliders and storage rings of the latest generation, without which the routine operation of the facility is difficult to imagine. The second part of the paper describes optical diagnostics used in experiments of heating the plasma by a high-current electron beam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Smaluk, Particle Beam Diagnostics for Accelerators. Instruments and Methods (VDM, Saarbrucken, 2009).

    Google Scholar 

  2. Proceedings of DIPAC (European Workshop on Beam Diagnostics and Instrumentation for Particle Accelerators). http://www.jacow.org/

  3. B. Walasek-Hohne and G. Kube, “A Review of Screen Monitors,” in Proceedings of DIPAC 2011 (Hamburg, 2011).

  4. L. Ya. Markovskii, F. M. Pekereman, and L. N. Petoshina, Luminophores (Khimiya, Moscow, 1966) [in Russian].

    Google Scholar 

  5. B. K. Scheidt, “Upgrade of SCRF Fluorescent Screen Monitors,” in Proceedings of DIPAC 2003, PM14.

  6. O. I. Meshkov, et al., “Experimental Comparison of Performance of Various Fluorescent Screens Applied for Relativistic Electron/Positron Beam Imaging,” in Proceedings of DIPAC 2011 (Hamburg, 2011).

  7. S. Dobert, R. Eichhorn, H. Genz, et al., “Transverse and Longitudinal Beam Diagnostics Using Transition Radiation,” in Proceedings of EPAC 1996 (Barcelona, Spain, 1996).

    Google Scholar 

  8. J. Frisch, et al., Beam Measurements at LCLS, Beam Instrumentation Workshop (BIW08) (Lake Tahoe, CA, USA).

  9. Proceedings of the CERN Accelerator School. Synchrotron Radiation and Free-Electron Lasers, Brunnen, Switzerland, 2–9 July 2003.

  10. A. Hofmann, “Theory of Synchrotron Radiation,” SLAC, SSRL ACD-NOTE 38 (1986).

  11. F. Roncarolo, “Synchrotron Radiation Measurement at the CERN LHC,” in Proceedings of DIPAC 2011 (Hamburg, 2011), WEOA04.

  12. G. N. Kulipanov and A. N. Skrinskii, “Utilization of Synchrotron Radiation: Current Status and Prospects,” Sov. Phys. Usp. 20, 559 (1977).

    Article  ADS  Google Scholar 

  13. H. Widemann, Synchrotron Radiation (Springer-Verlag, Berlin, Heidelberg, 2003).

    Book  Google Scholar 

  14. A. A. Sokolov and I. M. Ternov, Synchrotron Radiation (Pergamon, Oxford, 1966).

    Google Scholar 

  15. V. V. Anashin et al., Nucl. Instrum. Methods Phys. Res. A 478, 420–425 (2002).

    Article  ADS  Google Scholar 

  16. http://physics.nist.gov/MajResFac/SURF/SURF/schwinger.html

  17. O. Meshkov, et al., “The Upgraded Optical Diagnostics of the VEPP-4M Collider,” in Proceedings of EPAC 2004 (Lucerne, Switzerland, 2004), pp. 2739–2741.

    Google Scholar 

  18. E. I. Zinin et al., Nucl. Instrum. Methods Phys. Res. 208, 439–441 (1983).

    Article  ADS  Google Scholar 

  19. J. Coppens, G. Luijckx, and E. Zinin, in Proceedings of EPAC 96 (Sitges, Barcelona, 1996), vol. 2, pp. 1704–1706.

    Google Scholar 

  20. D. Berkaev et al., “VEPP-2000 Electron-Positron Collider Commissioning,” in Proceedings of 40th ICFA ABDW 2008 (Novosibirsk, Russia).

  21. Yu. A. Rogovsky, et al., “Beam Measurements with Visible Synchrotron Light at VEPP-2000 Collider,” in Proceedings of DIPAC 2011 (Hamburg, 2011).

  22. M.-A. Tordeux et al., “Ultimate Resolution of SOLEIL X-Ray Pinhole Camera,” in Proceedings of DIPAC 2007 (Venice, Italy, 2007).

  23. O. I. Meshkov, A. N. Zhuravlev, and V. V. Smaluk, “Multi-Pinhole Camera for Beam Position and Vertical Angle Stabilization,” JINST 5, 03004 (2010).

    Article  ADS  Google Scholar 

  24. D. T. Attwood, Soft X-Rays and Extreme Ultraviolet Radiation Principles and Applications (Cambridge Univ. Press, Cambridge, 2000), http://www.coe.berkely.edu/AST/sxreuv.

    Google Scholar 

  25. R. Brinkmann, “Accelerator Projects at DESY,” in Proceedings of DIPAC 2011 (Hamburg, 2011).

  26. S. Takano, M. Masaki, and H. Ohkuma, in Proceedings of the DIPAC 2005 (Lyon, France, 2005), p. 241.

  27. http://accelconf.web.cern.ch/Accelconf/e06/TALKS/THOBFI02-TALK.PDF

  28. T. Naito and T. Mitsuhashi, “Very Small Beam-Size Measurement by a Reflective Synchrotron Radiation Interferometer,” Phys. Rev. ST Accel. Beams 9, 122802 (2006).

    Article  ADS  Google Scholar 

  29. T. Mitsuhashi, in Proceedings of BIW 2004 (Knoxville, Tennessee, 2004), p. 3.

    Google Scholar 

  30. H. Hanyo et al., in Proceedings of PAC99 (1999), p. 2143.

  31. A. V. Bogomyagkov, et al., “New Fast Beam Profile Monitor for Electron-Positron Colliders,” Rev. Sci. Instrum. 78, 043305 (2007).

    Article  ADS  Google Scholar 

  32. S. Glukhov et al., “Study of Beam Dynamics during Crossing of Resonance in the VEPP-4M Storage Ring,” Beam Dynam. Newslett., No. 48 (Apr. 2009).

  33. V. A. Kiselev et al., “Beam Energy Spread Measurement at the VEPP-4M Electron-Positron Collider,” JINST, No. 06, 06001 (2007).

  34. O. B. Anchugov et al., “Experiments on the Physics of Charged Particle Beams at the VEPP-4M Electron-Positron Collider,” J. Exp. Theor. Phys. 109, 590 (2009).

    Article  ADS  Google Scholar 

  35. T. Shintake, “Proposal of Nanometer Beam Size Monitor for e+/e Linear Colliders,” Nucl. Instrum. Methods Phys. Res. A 311, 453–464 (1992).

    Article  ADS  Google Scholar 

  36. G. A. Blair, et al., “Proposing a Laser Based Beam Size Monitor for the Future Linear Collider,” in Proceedings of PAC2001 (Chicago, USA, 2001).

  37. P. Tenenbaum and T. Shintake, “Measurement of Small Electron Beam Spots,” SLAC-PUB-8057 (Stanford, USA, 1999).

  38. E. I. Zinin, “Stroboscopic Method of Electrooptical Chronography with Picosecond Resolution on the Base of Dissector with Electrostatic Focusing and Deflection,” Preprint IYaF SO AN SSSR No. 81-84 (Novosibirsk, 1981).

  39. J. Coppens, G. Luijckx, and E. Zinin, in Proceedings of EPAC 96 (Sitges, Barcelona, 1996), vol. 2, pp. 1704–1706.

    Google Scholar 

  40. K. Scheidt, “Review of Streak Cameras for Accelerators: Features, Applications and Results,” in Proceedings of EPAC 2000 (Vienna, Austria, 2000).

  41. K. Scheidt, “Dual Streak Camera at the ESRF,” in Proceedings of EPAC 1996 (Barcelona, Spain, 1996).

  42. Femtocesond Beam Science, Ed. by M. Uesaka (Imperial College Press, London, 2005).

    Google Scholar 

  43. O. A. Altenmueller, R. R. Larsen, and G. A. Loew, “Investigations of Travelling-Wave Separators for the Stanford Two-Mile Linear Accelerator,” Technical Report SLAC-PUB-017 (Stanfod Linear Accelerator Center, Stanford, CA, 1963).

    Google Scholar 

  44. P. Krejcik, “LCLS Accelerator System Overview,” in Proceedings of the LINAC 2004 (Lübeck, Germany, 2004), MO201.

    Google Scholar 

  45. C. Gerth, “Electron Beam Diagnostics for the European X-Ray Free-Electron Laser,” in Proceedings of DIPAC07, 20–23 May, Venice, Mestre, Italy.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © L.N. Vyacheslavov, M.V. Ivantsivskii, O.I. Meshkov, S.S. Popov, V.V. Smaluk, 2012, published in Fizika Elementarnykh Chastits i Atomnogo Yadra, 2012, Vol. 43, No. 2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vyacheslavov, L.N., Ivantsivskii, M.V., Meshkov, O.I. et al. Methods of optical diagnostics of electron-positron beams and interaction between plasma and high-current electron beam. Phys. Part. Nuclei 43, 231–261 (2012). https://doi.org/10.1134/S1063779612020074

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779612020074

Keywords

Navigation