Geometry, physics, and phenomenology of the Randall-Sundrum model

Abstract

This review is devoted to a discussion of the geometry and physics of the Randall-Sundrum model with two branes. The main focus is on its phenomenologically acceptable stabilized version. For this model, the second variation Lagrangian is constructed, its gauge invariance is studied, corresponding equations of motion are derived and decoupled, and physical degrees of freedom are explicitly isolated. For the stabilized model, possible phenomenological manifestations in experiments at the Tevatron and LHC are discussed for cases in which the center-of-mass energy is below or above the production threshold of the first Kaluza-Klein tensor resonance.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    G. Nordström, “Über Die Möglichkeit, das elektromagnetische Feld und das Gravitationsfeld zu vereinigen,” Phys. Zeitschr. 15, 504–506 (1914); physics/0702221.

    Google Scholar 

  2. 2.

    F. Ravndal, “Scalar Gravitation and Extra Dimensions,” arXiv:gr-qc/0405030.

  3. 3.

    T. Kaluza, “Zum Unitätsproblem in der Physik” (Sitzungsber Preuss, Akad. Wiss. Berlin., Math. Phys., 1921), pp. 966–972.

  4. 4.

    O. Klein, “Quantentheorie und Fünfdimensionale Relativitatstheorie,” Zeitschr. Phys. 37, 895–906 (1926).

    ADS  Article  Google Scholar 

  5. 5.

    V. A. Rubakov and M. E. Shaposhnikov, “Extra Space-Time Dimensions: Towards a Solution to the Cosmological Constant Problem,” Phys. Lett. B 125, 139–143 (1983).

    ADS  Article  Google Scholar 

  6. 6.

    P. Horava and E. Witten, “Heterotic and Type I String Dynamics from Eleven Dimensions,” Nucl. Phys. B 460, 506–524 (1996); hep-th/9510209.

    MathSciNet  ADS  MATH  Article  Google Scholar 

  7. 7.

    A. Lukas et al., “Universe as a Domain Wall,” Phys. Rev. D: Part. Fields 59, 086001 (1999); hepth/9803235.

    MathSciNet  ADS  Article  Google Scholar 

  8. 8.

    N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, “The Hierarchy Problem and New Dimensions at a Millimeter,” Phys. Lett. B 429, 263–272 (1998).

    ADS  Article  Google Scholar 

  9. 9.

    L. Randall and R. Sundrum, “Large Mass Hierarchy from a Small Extra Dimension,” Phys. Rev. Lett. 83, 3370–3373 (1999).

    MathSciNet  ADS  MATH  Article  Google Scholar 

  10. 10.

    V. A. Rubakov, “Large and Infinite Extra Dimensions,” Phys. Usp. 44, 871 (2001).

    ADS  Article  Google Scholar 

  11. 11.

    Y. A. Kubyshin, “Models with Extra Dimensions and their Phenomenology,” hep-ph/0111027.

  12. 12.

    N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, “Phenomenology, Astrophysics and Cosmology of Theories with Submillimeter Dimensions and TeV Scale Quantum Gravity,” Phys. Rev. D: Part. Fields 59, 086004 (1999).

    ADS  Article  Google Scholar 

  13. 13.

    P. Loren-Aguilar et al., “Time Variation of G and α within Models with Extra Dimensions,” Class. Quant. Grav. 20, 3885–3896 (2003).

    ADS  MATH  Article  Google Scholar 

  14. 14.

    I. Antoniadis, “Physics with Large Extra Dimensions,” Eur. Phys. J. C 33, S914 (2004).

    ADS  Article  Google Scholar 

  15. 15.

    L. Randall and R. Sundrum, “An Alternative to Compactification,” Phys. Rev. Lett. 83, 4690–4693 (1999).

    MathSciNet  ADS  MATH  Article  Google Scholar 

  16. 16.

    T. Gherghetta and A. Pomarol, “Bulk Fields and Supersymmetry in a Slice of AdS,” Nucl. Phys. B 586, 141 (2000); hep-ph/0003129.

    MathSciNet  ADS  MATH  Article  Google Scholar 

  17. 17.

    T. Appelquist, H. C. Cheng, and B. A. Dobrescu, “Bounds on Universal Extra Dimensions,” Phys. Rev. D: Part. Fields 64, 035002 (2001).

    ADS  Article  Google Scholar 

  18. 18.

    T. G. Rizzo, “Probes of Universal Extra Dimensions at Colliders,” Phys. Rev. D: Part. Fields 64, 095010 (2001).

    ADS  Article  Google Scholar 

  19. 19.

    C. Macesanu, C. D. McMullen, and S. Nandi, “New Signal for Universal Extra Dimensions,” Phys. Lett. B 546, 253–260 (2002).

    ADS  Article  Google Scholar 

  20. 20.

    K. Agashe et al., “LHC Signals from Warped Extra Dimensions,” Phys. Rev. D: Part. Fields 77, 015003 (2008); hep-ph/0612015.

    ADS  Article  Google Scholar 

  21. 21.

    K. Agashe, G. Perez, and A. Soni, “Collider Signals of Top Quark Flavor Violation from a Warped Extra Dimension,” Phys. Rev. D: Part. Fields 75, 015002 (2007); hep-ph/0606293.

    ADS  Article  Google Scholar 

  22. 22.

    K. Agashe et al., “Warped Gravitons at the LHC and Beyond,” Phys. Rev. D: Part. Fields 76, 036006 (2007); hep-ph/0701186.

    ADS  Article  Google Scholar 

  23. 23.

    A. L. Fitzpatrick et al., “Searching for the Kaluza-Klein Graviton in Bulk RS Models,” J. High Energy Phys. 0709, 013 (2007); hep-ph/0701150.

    MathSciNet  ADS  Article  Google Scholar 

  24. 24.

    B. Lillie, L. Randall, and L. T. Wang, “The Bulk RS KK-Gluon at the LHC,” J. High Energy Phys. 0709, 074 (2007); hep-ph/0701166.

    ADS  Article  Google Scholar 

  25. 25.

    G. Burdman et al., “A Strongly Coupled Fourth Generation at the LHC,” Phys. Rev. D: Part. Fields 79, 075026 (2009); arXiv:0812.0368 [hep-ph].

    ADS  Article  Google Scholar 

  26. 26.

    G. R. Dvali, G. Gabadadze, and G. Senjanovic, “Constraints on Extra Time Dimensions,” arXiv:hep-ph/9910207.

  27. 27.

    M. Chaichian and A. B. Kobakhidze, “Mass Hierarchy and Localization of Gravity in Extra Time,” Phys. Lett. B 488, 117–122 (2000).

    MathSciNet  ADS  MATH  Article  Google Scholar 

  28. 28.

    T. J. Li, “Time-Like Extra Dimension and Cosmological Constant in Brane Models,” Phys. Lett. B 503, 163–172 (2001).

    ADS  MATH  Article  Google Scholar 

  29. 29.

    G. F. R. Ellis and S. W. Hawking, The Large Scale Structure of Space-Time (Cambridge Univ. Press, Cambridge, 1973), pp. 131–134.

    MATH  Google Scholar 

  30. 30.

    N. Arkani-Hamed, M. Porrati, and L. Randall, “Holography and Phenomenology,” J. High Energy Phys. 0108, 017 (2001); hep-th/0012148.

    MathSciNet  ADS  Article  Google Scholar 

  31. 31.

    R. Rattazzi and A. Zaffaroni, “Comments on the Holographic Picture of the Randall-Sundrum Model,” J. High Energy Phys. 0104, 021 (2001); hep-th/0012248.

    MathSciNet  ADS  Article  Google Scholar 

  32. 32.

    M. N. Smolyakov, “Submanifolds in Spacetime with Unphysical Extra Dimensions, Cosmology and Warped Brane World Models,” Class. Quant. Grav. 25, 238003 (2008); Class. Quant. Grav. 27, 109801(E) (2010).

    MathSciNet  ADS  Article  Google Scholar 

  33. 33.

    M. A. H. MacCallum and A. H. Taub, “The Averaged Lagrangian and High-Frequency Gravitational Waves,” Commun. Math. Phys. 30, 153–169 (1973).

    MathSciNet  ADS  Article  Google Scholar 

  34. 34.

    E. E. Boos, I. P. Volobuev, Yu. A. Kubyshin, and M. N. Smolyakov, “Effective Lagrangians of the Randall-Sundrum Model,” Theor. Math. Phys. 131, 629 (2002).

    MATH  Article  Google Scholar 

  35. 35.

    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields (Nauka, Moscow, 1988; Pergamon, Oxford, 1975).

    Google Scholar 

  36. 36.

    L. P. Grishchuk, A. N. Petrov, and A. D. Popova, “Exact Theory of the (Einstein) Gravitational Field in an Arbitrary Background Space-Time,” Commun. Math. Phys. 94, 379–396 (1984).

    MathSciNet  ADS  Article  Google Scholar 

  37. 37.

    I. Ya. Aref’eva, M. G. Ivanov, W. Mück, K. S. Viswanthan, and I. V. Volovich, “Consistent Linearized Gravity in Brane Backgrounds,” Nucl. Phys. B 590, 273–286 (2000).

    ADS  MATH  Article  Google Scholar 

  38. 38.

    Ch. Charmousis, R. Gregory, and V. Rubakov, “Wave Function of the Radion in a Brane World,” Phys. Rev. D: Part. Fields 62, 067505 (2000).

    MathSciNet  ADS  Article  Google Scholar 

  39. 39.

    C. Csáki, M. Graesser, L. Randall, and J. Terning, “Cosmology of Brane Models with Radion Stabilization,” Phys. Rev. D: Part. Fields 62, 045015 (2000).

    ADS  Article  Google Scholar 

  40. 40.

    H. Davoudiasl, J. H. Hewett, and T. G. Rizzo, “Phenomenology of the Randall-Sundrum Gauge Hierarchy Model,” Phys. Rev. Lett. 84, 2080–2083 (2000).

    ADS  Article  Google Scholar 

  41. 41.

    H. Davoudiasl, J. H. Hewett, and T. G. Rizzo, “Experimental Probes of Localized Gravity: On and Off the Wall,” Phys. Rev. D: Part. Fields 63, 075004 (2001).

    ADS  Article  Google Scholar 

  42. 42.

    G. Bateman and A. Erdelyi, Higher Transcendental Functions (McGraw-Hill, New York, 1953; Nauka, Moscow, 1974).

    Google Scholar 

  43. 43.

    I. P. Volobuev and M. N. Smolyakov, “Exact Solutions for Linearized Gravity in the Randall-Sundrum Model,” Theor. Math. Phys. 139, 458–472 (2004).

    MathSciNet  MATH  Article  Google Scholar 

  44. 44.

    J. Garriga and T. Tanaka, “Gravity in the Brane World,” Phys. Rev. Lett. 84, 2778–2781 (2000).

    MathSciNet  ADS  MATH  Article  Google Scholar 

  45. 45.

    S. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972; Platon, Volgograd, 2000).

    Google Scholar 

  46. 46.

    W. D. Goldberger and M. B. Wise, “Modulus Stabilization with Bulk Fields,” Phys. Rev. Lett. 83, 4922–4925 (1999).

    ADS  Article  Google Scholar 

  47. 47.

    O. DeWolfe, D. Z. Freedman, S. S. Gubser, and A. Karch, “Modeling the Fifth-Dimension with Scalars and Gravity,” Phys. Rev. D: Part. Fields 62, 046008 (2000).

    MathSciNet  ADS  Article  Google Scholar 

  48. 48.

    E. E. Boos, Yu. S. Mikhailov, M. N. Smolyakov, and I. P. Volobuev, “Physical Degrees of Freedom in Stabilized Brane World Models,” Mod. Phys. Lett. A 21, 1431–1449 (2006).

    ADS  MATH  Article  Google Scholar 

  49. 49.

    E. E. Boos, I. P. Volobuev, Yu. S. Mikhailov, and M. N. Smolyakov, “Linearized Gravity in the Randall-Sundrum Model with Stabilized Distance between Branes,” Theor. Math. Phys. 149, 1591 (2006).

    MathSciNet  MATH  Article  Google Scholar 

  50. 50.

    Ch. Charmousis, R. Gregory, and V. Rubakov, “Wave Function of the Radion in a Brane World,” Phys. Rev. D: Part. Fields 62, 067505 (2000).

    MathSciNet  ADS  Article  Google Scholar 

  51. 51.

    M. Toharia, “The Radion and the Perturbative Metric in RS1,” Mod. Phys. Lett. A 19, 37–48 (2004).

    MathSciNet  ADS  MATH  Article  Google Scholar 

  52. 52.

    C. Csáki, M. L. Graesser, and G. D. Kribs, “Radion Dynamics and Electroweak Physics,” Phys. Rev. D: Part. Fields 63, 065002 (2001).

    ADS  Article  Google Scholar 

  53. 53.

    V. M. Babich, M. B. Kapilevich, and S. G. Mikhlin, Linear Equations of Mathematical Physics (Nauka, Moscow, 1964) [in Russian].

    MATH  Google Scholar 

  54. 54.

    O. Sh. Mukhtarov and M. Kadakal, “Some Spectral Properties of one Sturm-Liouville Type Problem with Discontinuous Weight,” Sib. Matem. Zh. 46, 860–875 (2005).

    MathSciNet  MATH  Google Scholar 

  55. 55.

    L. Kofman, J. Martin, and M. Peloso, “Exact Identification of the Radion and Its Coupling to the Observable Sector,” Phys. Rev. D: Part. Fields 70, 085015 (2004).

    ADS  Article  Google Scholar 

  56. 56.

    A. Brandhuber and K. Sfetsos, “Nonstandard Compactifications with Mass Gaps and Newton’s Law,” J. High Energy Phys. 9910, 013 (1999).

    MathSciNet  ADS  Article  Google Scholar 

  57. 57.

    E. E. Boos, Yu. S. Mikhailov, M. N. Smolyakov, and I. P. Volobuev, “Energy Scales in Stabilized Brane World Models,” Nucl. Phys. B 717, 19–33 (2005).

    MathSciNet  ADS  MATH  Article  Google Scholar 

  58. 58.

    P. Langacker, “Grand Unified Theories and Proton Decay,” Phys. Rep. 72, 185–385 (1981).

    ADS  Article  Google Scholar 

  59. 59.

    I. P. Volobuev, Yu. S. Mikhailov, and M. N. Smolyakov, “Newtonian Limit in the Stabilized Randall-Sundrum Model,” Theor. Math. Phys. 156, 1159–1168 (2008).

    MathSciNet  MATH  Article  Google Scholar 

  60. 60.

    V. M. Abazov et al., “Search for Randall-Sundrum Gravitons in the Dielectron and Diphoton Final States with 5.4 fb −1 of Data from pp bar Collisions at √s = 1.96 TeV,” Phys. Rev. Lett. 104, 241802 (2010).

    ADS  Article  Google Scholar 

  61. 61.

    S. Weinberg, “Phenomenological Lagrangians,” Physica A 96, 327–340 (1979).

    ADS  Article  Google Scholar 

  62. 62.

    W. Buchmuller and D. Wyler, “Effective Lagrangian Analysis of New Interactions and Flavor Conservation,” Nucl. Phys. B 268, 621–653 (1986).

    ADS  Article  Google Scholar 

  63. 63.

    C. P. Burgess and D. London, “Uses and Abuses of Effective Lagrangians,” Phys. Rev. D: Part. Fields 48, 4337–4351 (1993).

    ADS  Article  Google Scholar 

  64. 64.

    C. P. Burgess, S. Godfrey, H. Konig, D. London, and I. Maksymyk, “Model Independent Global Constraints on New Physics,” Phys. Rev. D: Part. Fields 49, 6115–6147 (1994).

    ADS  Article  Google Scholar 

  65. 65.

    K. Whisnant, J. M. Yang, B. L. Young, and X. Zhang, “Dimension-Six CP-Conserving Operators of the Third-Family Quarks and Their Effects on Collider Observables,” Phys. Rev. D: Part. Fields 56, 467–478 (1997).

    ADS  Article  Google Scholar 

  66. 66.

    J. M. Yang and B. L. Young, “Dimension-Six CP-Violating Operators of the Third-Family Quarks and Their Effects at Colliders,” Phys. Rev. D: Part. Fields 56, 5907–5918 (1997).

    ADS  Article  Google Scholar 

  67. 67.

    E. Boos, L. Dudko, and T. Ohl, “Complete Calculations of W b b bar and W b b bar + Jet Production at Tevatron and LHC: Probing Anomalous Wtb Couplings in Single-Top Production,” Eur. Phys. J. C 11, 473–484 (1999).

    ADS  Google Scholar 

  68. 68.

    P. M. Ferreira and R. Santos, “Contributions from Dimension Six Strong Flavor Changing Operators to tt bar Plus Gauge Boson, and t Plus Higgs Boson Production at the CERN LHC,” Phys. Rev. D: Part. Fields 74, 014006 (2006).

    ADS  Article  Google Scholar 

  69. 69.

    T. G. Rizzo, “Indirect Collider Tests for Large Extra Dimensions,” hep-ph/9910255.

  70. 70.

    H. Davoudiasl, J. L. Hewett, and T. G. Rizzo, “Bulk Gauge Fields in the Randall-Sundrum Model,” Phys. Lett. B 473, 43–49 (2000).

    MathSciNet  ADS  MATH  Article  Google Scholar 

  71. 71.

    T. G. Rizzo, “Testing the Nature of Kaluza-Klein Excitations at Future Lepton Colliders,” Phys. Rev. D: Part. Fields 61, 055005 (2000).

    ADS  Article  Google Scholar 

  72. 72.

    E. E. Boos, Y. A. Kubyshin, M. N. Smolyakov, and I. P. Volobuev, “Effective Lagrangians for Physical Degrees of Freedom in the Randall-Sundrum Model,” Class. Quant. Grav. 19, 4591–4606 (2002).

    MathSciNet  ADS  MATH  Article  Google Scholar 

  73. 73.

    R. Arnowitt and J. Dent, “Gravitational Forces in the Randall-Sundrum Model with a Scalar Stabilizing Field,” Phys. Rev. D: Part. Fields 75, 064001 (2007).

    MathSciNet  ADS  Article  Google Scholar 

  74. 74.

    G. F. Giudice, R. Rattazzi, and J. D. Wells, “Graviscalars from Higher-Dimensional Metrics and Curvature-Higgs Mixing,” Nucl. Phys. B 595, 250–276 (2001).

    MathSciNet  ADS  MATH  Article  Google Scholar 

  75. 75.

    C. Csáki, M. L. Graesser, and G. D. Kribs, “Radion Dynamics and Electroweak Physics,” Phys. Rev. D: Part. Fields 63, 065002 (2001).

    ADS  Article  Google Scholar 

  76. 76.

    J. L. Hewett, “Indirect Collider Signals for Extra Dimensions,” Phys. Rev. Lett. 82, 4765–4768 (1999).

    ADS  Article  Google Scholar 

  77. 77.

    A. K. Gupta, N. K. Mondal, and S. Raychaudhuri, “Constraining Large Extra Dimensions Using Dilepton Data from the Tevatron Collider,” hep-ph/9904234.

  78. 78.

    K. M. Cheung and G. L. Landsberg, “Drell-Yan and Diphoton Production at Hadron Colliders and Low Scale Gravity Model,” Phys. Rev. D: Part. Fields 62, 076003 (2000).

    ADS  Article  Google Scholar 

  79. 79.

    E. E. Boos, V. E. Bunichev, M. N. Smolyakov, and I. P. Volobuev, “Testing Extra Dimensions Below the Production Threshold of Kaluza-Klein Excitations,” Phys. Rev. D: Part. Fields 79, 104013 (2009).

    ADS  Article  Google Scholar 

  80. 80.

    E. Boos et al., “CompHEP 4.4: Automatic Computations from Lagrangians to Events,” Nucl. Instrum. Methods Phys. Res. A 534, 250–259 (2004).

    ADS  Article  Google Scholar 

  81. 81.

    J. A. M. Vermaseren, “Prospects of FORM,” Nucl. Instrum. Methods Phys. Res. A 559, 1–5 (2006).

    ADS  Article  Google Scholar 

  82. 82.

    H. Davoudiasl, J. L. Hewett, and T. G. Rizzo, “Phenomenology of the Randall-Sundrum Gauge Hierarchy Model,” Phys. Rev. Lett. 84, 2080–2083 (2000).

    ADS  Article  Google Scholar 

  83. 83.

    V. M. Abazov et al., “Search for Large Extra Spatial Dimensions in the Dielectron and Diphoton Channels in pp Collisions at = 1.96 TeV,” Phys. Rev. Lett. 102, 051601 (2009).

    ADS  Article  Google Scholar 

  84. 84.

    G. L. Bayatian et al., “CMS Technical Design Report, Vol. II: Physics Performance,” J. Phys. G 34, 995–1579 (2007).

    Article  Google Scholar 

  85. 85.

    G. F. Giudice, R. Rattazzi, and J. D. Wells, “Quantum Gravity and Extra Dimensions at High-Energy Colliders,” Nucl. Phys. B 544, 3–38 (1999).

    ADS  Article  Google Scholar 

  86. 86.

    P. Mathews, V. Ravindran, K. Sridhar, and W. L. van Neerven, “Next-to-Leading Order QCD Corrections to the Drell-Yan Cross Section in Models of TeV-Scale Gravity,” Nucl. Phys. B 713, 333–377 (2005); P. Mathews, V. Ravindran, and K. Sridhar, “NLO-QCD Corrections to Dilepton Production in the Randall-Sundrum Model,” J. High Energy Phys. 0510, 031 (2005).

    ADS  Article  Google Scholar 

  87. 87.

    P. Mathews and V. Ravindran, “Angular Distribution of Drell-Yan Process at Hadron Colliders to NLO-QCD in Models of TeV Scale Gravity,” Nucl. Phys. B 753, 1–15 (2006).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. E. Boos.

Additional information

Original Russian Text © E.E. Boos, V.E. Bunichev, I.P. Volobuev, M.N. Smolyakov, 2012, published in Fizika Elementarnykh Chastits i Atomnogo Yadra, 2012, Vol. 43, No. 1.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Boos, E.E., Bunichev, V.E., Volobuev, I.P. et al. Geometry, physics, and phenomenology of the Randall-Sundrum model. Phys. Part. Nuclei 43, 42–78 (2012). https://doi.org/10.1134/S1063779612010017

Download citation

Keywords

  • Scalar Field
  • Extra Dimension
  • Stan Dard Model
  • Large Extra Dimension
  • Universal Extra Dimension