Skip to main content
Log in

The dubna gas-filled recoil separator: Software and algorithms

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

Experiments carried out on the gas-filled separator of recoil nuclei at the Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, in the past several years have proved the hypothesis of the existence of a stability island of superheavy nuclei. The accelerator, beam diagnostics, and detector technologies underlay the success. It is the highly sensitive detecting system of the separator combined with the method of “active correlations” that allowed rare events of the decay of superheavy nuclei to be reliably detected under almost background-free conditions. In turn, to a large extent, this has been made possible owing to special algorithms and software developed for long-term experiments in the beam of 48Ca ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. Ts. Oganessian et al., Phys. Rev. Lett. 104, 142502 (2010).

    Article  ADS  Google Scholar 

  2. K. Subotic et al., Nucl. Instrum. Methods Phys. Res. A 481, 71 (2002).

    Article  ADS  Google Scholar 

  3. Yu. A. Lazarev et al., Phys. Rev. Lett. 75, 1903 (1995).

    Article  ADS  Google Scholar 

  4. Yu. A. Lazarev et al., Phys. Rev. Lett. 73, 624 (1994).

    Article  ADS  Google Scholar 

  5. Yu. Ts. Oganessian et al., Phys. Rev. C 70, 064609 (2004).

    Article  ADS  Google Scholar 

  6. Yu. Ts. Oganessian et al., Phys. Rev. C 69, 054607 (2004).

    Article  ADS  Google Scholar 

  7. Yu. S. Tsyganov, Phys. Part. Nucl. Lett. 6, 59–62 (2009).

    Article  Google Scholar 

  8. Yu. S. Tsyganov, in Proceedings of the NEC’2007, Varna, Sept. 10–17, 2008 (Dubna, 2008), pp. 430–433.

  9. D. Wittwer et al., Nucl. Instrum. Methods Phys. Res. 268, 28–35 (2010).

    Article  ADS  Google Scholar 

  10. S. N. Dmitriev et al., in Proceedings of the TAN07, Sept. 2007.

  11. V. E. Zhuchko and Yu. S. Tsyganov, Soobshch. OIYaI R7-89-451.

  12. Yu. S. Tsyganov et al., Nucl. Instrum. Methods Phys. Res. A 513, 413–416 (2003).

    Article  ADS  Google Scholar 

  13. Yu. S. Tsyganov et al., Nucl. Instrum. Methods Phys. Res. A 525, 213–216 (2004).

    Article  ADS  Google Scholar 

  14. Yu. A. Lazarev, V. G. Subbotin, Yu. S. Tsyganov et al., in Proceedings of the 17th Symposium on Nuclear Electronics, Varna, Bulgaria, Sept. 15–21, 1997 (Dubna, 1998), pp. 202–205.

  15. Yu. S. Tsyganov, Nucl. Instrum. Methods Phys. Res. A 582, 696–700 (2007).

    Article  ADS  Google Scholar 

  16. Yu. S. Tsyganov et al., Nucl. Instrum. Methods Phys. Res. A 477, 406–409 (2002).

    Article  ADS  Google Scholar 

  17. V. G. Subbotin et al., Acta Phys. Polon. 34, 2159 (2003).

    ADS  Google Scholar 

  18. Yu. S. Tsyganov et al., Nucl. Instrum. Methods Phys. Res. A 392, 197–201 (1997).

    Article  ADS  Google Scholar 

  19. Yu. S. Tsyganov, Nucl. Instrum. Methods Phys. Res. A 608, 183–184 (2009).

    Article  ADS  Google Scholar 

  20. Yu. S. Tsyganov, Phys. Part. Nucl. Lett. 4, 363–366 (2007).

    Article  Google Scholar 

  21. A. Yu. Bonyushkina et al., Preprint OIYaI R10-95-284.

  22. N. I. Zhuravlev et al., Soobshch. OIYaI 10-11636 (Dubna, 1978).

  23. A. M. Sukhov et al., Soobshch. OIYaI R13-96-371 (Dubna, 1996).

  24. Yu. S. Tsyganov, J. Phys. G: Nucl. Part. Phys. 25, 937–940 (1999).

    Article  ADS  Google Scholar 

  25. Yu. S. Tsyganov, in Proceedings of the NEC’1997, Varna, Sept. 15–21 (Dubna, 1998), pp. 206–210.

  26. Yu. S. Tsyganov, Fiz. Elem. Chastits At. Yadra 40, 1563–1602 (2009) [Phys. Part. Nucl. 40, 822 (2009)].

    Google Scholar 

  27. Yu. S. Tsyganov, in Proceedings of the IEEE Real-Time Conference, June, 2010, Lisbon, Portugal.

  28. Yu. S. Tsyganov et al., in Proceedings of the HPC-ASIA’97 Conference, Seoul, Korea, 2 May, 1997 (IEE Comp. Soc. Press, CA, 1997).

    Google Scholar 

  29. Yu. S. Tsyganov, JINR Commun. E10-99-36 (1999).

  30. Yu. S. Tsyganov and A. N. Polyakov, Appl. Radiat. Isotopes 47, 451–454 (1996).

    Article  Google Scholar 

  31. A. M. Sukhov, A. N. Polyakov, and Yu. S. Tsyganov, Pis’ma Fiz. Elem. Chastits At. Yadra 7, 603–615 (2010) [Phys. Part. Nucl. Lett. 7, 370 (2010)].

    Google Scholar 

  32. Yu. S. Tsyganov, Nucl. Instrum. Methods Phys. Res. A 378, 356–359 (1996).

    Article  ADS  Google Scholar 

  33. E. L. Haines and A. B. Whitehead, Rev. Sci. Instrum. 3, 190 (1966).

    Article  ADS  Google Scholar 

  34. B. D. Wilkins et al., Nucl. Instrum. Methods Phys. Res. 92, 381 (1971).

    Article  ADS  Google Scholar 

  35. V. F. Kushniruk and Yu. S. Tsyganov, Prib. Tekh. Eksp., No. 3, 30–33 (1998) [Instrum. Exp. Tech. 41, 320 (1996)].

  36. Yu. S. Tsyganov and A. N. Polyakov, Nucl. Instrum. Methods Phys. Res. A 363, 611–613 (1995).

    Article  ADS  Google Scholar 

  37. Yu. S. Tsyganov, Soobshch. OIYaI R13-96-340 (1996).

  38. In Proceedings of the NEC’2007, Varna, Sept. 10–17, 2008 (Dubna, 2008), pp. 423.

  39. S. Hoffmann et al., Eur. Phys. A 32, 251 (2007).

    Article  ADS  Google Scholar 

  40. K.-H. Schmidt et al., Z. Phys. A 316, 19 (1984).

    Article  ADS  Google Scholar 

  41. V. B. Zlokazov, Eur. Phys. A 8, 81–86 (2000).

    Article  ADS  Google Scholar 

  42. Yu. S. Tsyganov, Soobshch. OIYaI R7-2008-189 (2008).

  43. Yu. Ts. Oganessian et al., Phys. Rev. C 72, 034611 (2005).

    Article  ADS  Google Scholar 

  44. V. E. Viola and G. T. J. Seaborg, Inorg. Chem. 28, 741–744 (1966).

    Google Scholar 

  45. N. Stoyer et al., Nucl. Instrum. Methods Phys. Res. A 455, 433–441 (2000).

    Article  ADS  Google Scholar 

  46. Yu. Ts. Oganessian, J. Phys. G: Part Nucl. Phys. 34, 165 (2007).

    Article  ADS  Google Scholar 

  47. R. Eichler et al., Nature 447(3), 72 (2007).

    Article  ADS  Google Scholar 

  48. R. Eichler et al., Radiochem. Acta 9, 133 (2010).

    Article  Google Scholar 

  49. S. N. Dmitriev, Mendeleyev Commun. (in press).

  50. Yu. S. Tsyganov, JINR Commun. E10-2010-127.

  51. Yu. S. Tsyganov, in Proceedings of the NPS-2010 Symposium, Dec. 20–24, 2010, Pilani, India, p. 728.

  52. A. V. Isaev et al., Prib. Tekh. Eksp., No. 6, 1–5 (2010) [Instrum. Exp. Tech. 53, 788 (2010)].

  53. V. F. Kushniruk, Soobshch. OIYaI R13-11933 (1978).

  54. Yu. S. Tsyganov, Appl. Radiat. Isotopes 48, 1211–1213 (1997).

    Article  Google Scholar 

  55. W. Seibt, K. E. Sundström, and P. A. Tove, Nucl. Instrum. Methods Phys. Res. 113, 317 (1973).

    Article  Google Scholar 

  56. Yu. Ts. Oganessian and V. K. Utyonkov et al., Phys. Rev. C (in press).

  57. Yu. Tsyganov, Pis’ma Fiz. Elem. Chastits At. Yadra 8, 63–67 (2011) [Phys. Part. Nucl. Lett. 8, 37 (2011)].

    Google Scholar 

  58. Yu. S. Tsyganov and A. N. Polyakov, Nucl. Instrum. Methods Phys. Res. A 558, 329–332 (2006).

    Article  ADS  Google Scholar 

  59. Yu. S. Tsyganov, A. M. Sukhov, and A. N. Polyakov, JINR Commun. E10-99-36 (Dubna, 1999).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © Yu.S. Tsyganov, 2011, published in Fizika Elementarnykh Chastits i Atomnogo Yadra, 2011, Vol. 42, No. 5.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsyganov, Y.S. The dubna gas-filled recoil separator: Software and algorithms. Phys. Part. Nuclei 42, 812–845 (2011). https://doi.org/10.1134/S1063779611050054

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779611050054

Keywords

Navigation