Skip to main content
Log in

Hamiltonian reduction of SU(2) gluodynamics

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The Hamiltonian reduction of the Yang-Mills theory with the structure group SU(2) to a nonlocal model of a self-interacting 3 × 3 positive semidefinite matrix field is presented. Analysis of the field transformation properties under the action of the Poincaré group is carried out. It is shown that, in the strong coupling limit, the classical dynamics of a reduced system can be described by the local theory of interacting nonrelativistic spin-0 and spin-2 fields. A perturbation theory in powers of the inverse coupling constant g −2/3 that allows calculating the corrections to a leading long-wave approximation is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Weyl, Space, Time, Matter (Dover, New York, 1922; Yanus, Moscow, 1996).

    MATH  Google Scholar 

  2. N. N. Bogolyubov and D. V. Shirkov, Introduction into the Theory of Quantized Fields (Nauka, Moscow, 1973; Wiley, New York, 1980).

    Google Scholar 

  3. S. Weinberg, The Quantum Theory of Fields, Vol. 1 (Cambridge Univ., Cambridge, 2000; Fizmatlit, Moscow, 2003).

    Google Scholar 

  4. E. P. Wigner, “On Unitary Representations of the Inhomogeneous Lorentz Group,” Ann. Math. 40, 149 (1939).

    Article  MathSciNet  Google Scholar 

  5. C. N. Yang and R. L. Mills, “Conservation of Isotopic Spin and Isotopic Gauge Invariance,” Phys. Rev. 96, 192–195 (1954).

    Article  MathSciNet  ADS  Google Scholar 

  6. R. Jackiw, “Introduction to the Yang-Mills Theory,” Rev. Mod. Phys. 52, 661–673 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  7. T. P. Cheng and L. F. Li, Gauge Theory of Elementary Particle Physics (Oxford Univ., Oxford, 1984; Mir, Moscow, 1987).

    Google Scholar 

  8. A. A. Slavnov and L. D. Faddeev, Gauge Fields, Introduction to Quantum Theory (Nauka, Moscow, 1988; Addison-Wesley, Reading, MA, 1991).

    Google Scholar 

  9. V. Rubakov, Classical Gauge Fields (URSS, Moscow, 1999) [in Russian].

    Google Scholar 

  10. P. A. M. Dirac, Lectures on Quantum Mechanics (Dover, New York, 2001; Mir, Moscow, 1968).

    Google Scholar 

  11. K. Sundermeyer, Constrained Dynamics, Lecture Notes in Physics, Vol. 169 (Springer, Berlin, Heidelberg, New York, 1982).

    MATH  Google Scholar 

  12. M. Henneaux and C. Teitelboim, Quantization of Gauge Systems (Princeton Univ., Princeton, NJ, 1992).

    MATH  Google Scholar 

  13. L. D. Faddeev and V. N. Popov, “Feynman Diagrams for the Yang-Mills Field,” Phys. Lett. B 25, 29–30 (1967).

    Article  ADS  Google Scholar 

  14. L. D. Faddeev, “Feynman Integral for Singular Lagrangians,” Teor. Mat. Fiz. 1, 3–18 (1969) [Theor. Math. Phys. 1, 1–15 (1970)].

    MathSciNet  Google Scholar 

  15. J. Goldstone and R. Jackiw, “Unconstrained Temporal Gauge for Yang-Mills Theory,” Phys. Lett. B 74, 81–84 (1978).

    Article  ADS  Google Scholar 

  16. V. Baluni and B. Grossman, “QCD without Gauge Field Constraints,” Phys. Lett. B 78, 226–230 (1978).

    Article  ADS  Google Scholar 

  17. A. G. Izergin, V. F. Korepin, M. E. Semenov-Tyan-Shanskii, and L. D. Faddeev, “On Gauge Fixing Conditions in the Yang-Mills Theory,” Theor. Math. Phys. 38, 1–9 (1979).

    Article  MathSciNet  Google Scholar 

  18. A. Das, M. Kaku, and P. K. Townsend, “Gauge Fixing Ambiguities, Flux Strings, and the Unconstrained Yang-Mills Theory,” Nucl. Phys. B 149, 109–122 (1979).

    Article  ADS  Google Scholar 

  19. M. Creutz, I. J. Muzinich, and T. N. Tudron, “Gauge Fixing and Canonical Quantization,” Phys. Rev. D: Part. Fields 19, 531–539 (1979).

    Article  ADS  Google Scholar 

  20. N. H. Christ and T. D. Lee, “Operator Ordering and Feynman Rules in Gauge Theories,” Phys. Rev. D: Part. Fields 22, 939–958 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  21. Yu. Simonov, “Gauge Invariant Formulation of SU(2) Gluodynamics,” Sov. J. Nucl. Phys. 41, 1014–1019 (1985).

    MathSciNet  Google Scholar 

  22. Yu. Simonov, “QCD Hamiltonian in the Polar Representation,” Sov. J. Nucl. Phys. 41, 835–841 (1986).

    MathSciNet  Google Scholar 

  23. V. V. Vlasov, V. A. Matveev, A. N. Tavkhelidze, S. Yu. Khlebnikov, and M. E. Shaposhnikov, “Canonical Quantization of Gauge Theories with Scalar Condensate and the Problem of Spontaneous Symmetry Breaking,” Fiz. Elem. Chastits At. Yadra 18, 5–38 (1987) [Sov. J. Part. Nucl. 18, 1 (1987)].

    MathSciNet  Google Scholar 

  24. K. Haller, “Yang-Mills Theory and Quantum Chromodynamics in the Temporal Gauge,” Phys. Rev. D: Part. Fields 36, 1839–1845 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  25. R. Anishetty, “Local Dynamics on Gauge Invariant Basis of Nonabelian Gauge Theories,” Phys. Rev. D: Part. Fields 44, 1895–1896 (1991).

    Article  MathSciNet  ADS  Google Scholar 

  26. E. T. Newman and C. Rovelli, “Generalized Lines of Force as the Gauge Invariant Degrees of Freedom for General Relativity and Yang-Mills Theory,” Phys. Rev. Lett. 69, 1300–1303 (1992).

    Article  ADS  Google Scholar 

  27. M. Bauer, D. Z. Freedman, and P. E. Haagensen, “Spatial Geometry of the Electric Field Representation of Nonabelian Gauge Theories,” Nucl. Phys. B 428, 147–168 (1994); P. E. Haagensen, M. Bauer, and K. Johnson, “Yang-Mills Fields and Riemannian Geometry,” Nucl. Phys. B 439, 597–616 (1995).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. F. A. Lunev, “Four-Dimensional Yang-Mills Theory in Local Gauge Invariant Variables,” Mod. Phys. Lett. A 9, 2281–2292 (1994).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. M. Lavelle and D. McMullan, “Constituent Quarks from QCD,” Phys. Rep. 279, 1–65 (1997).

    Article  ADS  Google Scholar 

  30. R. Horan, M. Lavelle, and D. McMullan, “Charges in Gauge Theories,” Pramana 51, 317–355 (1998).

    Article  ADS  Google Scholar 

  31. S. A. Gogilidze, A. M. Khvedelidze, D. M. Mladenov, and H.-P. Pavel, “Hamiltonian Reduction of SU(2) Dirac-Yang-Mills Mechanics,” Phys. Rev. D: Part. Fields 57, 7488–7500 (1998).

    Article  MathSciNet  ADS  Google Scholar 

  32. A. M. Khvedelidze and H.-P. Pavel, “Unconstrained Hamiltonian Formulation of SU(2) Gluodynamics,” Phys. Rev. D: Part. Fields 59, 105017 (1999).

    Article  ADS  Google Scholar 

  33. A. M. Khvedelidze, H.-P. Pavel, and G. Röpke, “Unconstrained SU(2) Yang-Mills Theory with Topological Term in the Long-Wavelength Approximation,” Phys. Rev. D: Part. Fields 67, 105013 (2003).

    Article  ADS  Google Scholar 

  34. P. Majumdar and H. S. Sharatchandra, “(3+1)-Dimensional Yang-Mills Theory as a Local Theory of Evolution of Metrics on Three Manifolds,” Phys. Lett. B 491, 199–202 (2001).

    MathSciNet  ADS  Google Scholar 

  35. A. Salmela, “Function Group Approach to Unconstrained Hamiltonian Yang-Mills Theory,” J. Math. Phys. 46, 102302 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  36. A. M. Khvedelidze, “On the Hamiltonian Formulation of Gauge Theories in Terms of Physical Variables,” J. Math. Sci. 119, 513–555 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  37. E. T. Whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, with an Introduction to the Problem of Three Bodies (Cambridge Univ., Cambridge, 1917; Glavn. Red. Tekhn.-Teor. Liter., Moscow, 1937).

    Google Scholar 

  38. V. I. Arnold, Mathematical Methods in Classical Mechanics, Grad. Texts in Math., vol. 60 (Springer, New York, Heidelberg, 1978; Editorial URSS, Moscow, 2000).

    Google Scholar 

  39. S. A. Gogilidze, V. N. Pervushin, and A. M. Khvedelidze, “Reduction in Systems with Local Symmetries,” Fiz. Elem. Chastits At. Yadra 30, 160–209 (1999) [Phys. Part. Nucl. 30, 66 (1999)].

    MathSciNet  Google Scholar 

  40. C. N. Yang, Selected Papers, 1945–1980 (Freeman, San Francisco, 1982).

    Google Scholar 

  41. R. Arnowitt, S. Deser, and C. W. Misner, “Consistency of the Canonical Reduction of General Relativity,” J. Math. Phys. 1, 434–439 (1960).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. M. S. Narasimhan and T. R. Ramadas, “Geometry of SU(2) Gauge Fields,” Comm. Math. Phys. 67, 121–136 (1979).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. P. K. Mitter, “Geometry of the Space of Gauge Orbits and the Yang-Mills Dynamical System,” in Lectures Given at Cargese Summer Inst. on Recent Developments in Gauge Theories, Cargese, France, Aug. 26–Sep. 8, 1979, Ed. by G. t’Hooft (Plenum, New York, 1980).

    Google Scholar 

  44. L. V. Prokhorov, “Gauge Conditions and Gauge Transformations,” Fiz. Elem. Chastits At. Yadra 27, 1397–1468 (1996) [Phys. Part. Nucl. 27, 539 (1996)].

    MathSciNet  Google Scholar 

  45. J. D. Jackson and L. B. Okun, “Historical Roots of Gauge Invariance,” Rev. Mod. Phys. 73, 663–680 (2001).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. V. N. Gribov, “Quantization on Nonabelian Gauge Theories,” Nucl. Phys. B 139, 1–19 (1978).

    Article  MathSciNet  ADS  Google Scholar 

  47. I. M. Singer, “Some Remarks on the Gribov Ambiguity,” Comm. Math. Phys. 60, 7–12 (1978).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  48. S. G. Matinyan, G. K. Savvidi, and N. G. Ter-Arutunyan-Savvidi, “Classical Yang-Mills Mechanics. Nonlinear Color Oscillations,” Zh. Eksp. Teor. Fiz. 80, 830–838 (1981) [Sov. Phys. JETP 53, 421 (1981)].

    Google Scholar 

  49. H. M. Asatryan and G. K. Savvidy, “Configuration Manifold of Yang-Mills Classical Mechanics,” Phys. Lett. A 99, 290–292 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  50. F. R. Gantmacher, Matrix Theory (Amer. Math. Soc., New York, 1990; Nauka, Moscow, 1988).

    Google Scholar 

  51. J. M. Arms, “Linearization Stability of Gravitational and Gauge Fields,” J. Math. Phys. 20, 443 (1979).

    Article  MathSciNet  ADS  Google Scholar 

  52. V. Moncrief, “Reduction of the Yang-Mills Equations,” Springer Lect. Notes Math. 836, 276–291 (1980)

    Article  MathSciNet  Google Scholar 

  53. J. M. Arms, “Symmetry and Solution Set Singularities in Hamiltonian Field Theories,” Acta Phys. Polon. B 17, 499–523 (1986).

    MathSciNet  Google Scholar 

  54. C. Emmrich and H. Romer, “Orbifolds as Configuration Spaces of Systems with Gauge Symmetries,” Comm. Math. Phys. 129, 69–94 (1990).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  55. G. Rudolph, M. Schmidt, and I. P. Volobuev, “On the Gauge Orbit Space Stratification: A Review,” J. Phys. A 35, R1–R50 (2002).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  56. J. Fuchs, M. G. Schmidt, and C. Schweigert, “On the Configuration Space of Gauge Theories,” Nucl. Phys. B 426, 107 (1994).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  57. L. G. Loitsyanskii, Mechanics of Liquid and Gas (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  58. B. Zumino, “Gauge Properties of Propagators in Quantum Electrodynamics,” J. Math. Phys. 1, 1–7 (1960).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  59. J. D. Bjorken and S. D. Drell, Relativistic Quantum Fields (McGraw-Hill, New York, 1965; Nauka, Moscow, 1978).

    MATH  Google Scholar 

  60. L. Michel and L. Radicati, “The Geometry of the Octet,” Ann. Inst. H. Poincaré Phys. Thåor. 18, 185–214 (1973).

    MathSciNet  MATH  Google Scholar 

  61. L. O’Raifeartaigh, Group Structure of Gauge Theories (Cambridge Univ., Cambridge, 1986).

    Book  MATH  Google Scholar 

  62. A. M. Khvedelidze, D. M. Mladenov, H.-P. Pavel, and G. Röpke, “On Unconstrained SU(2) Gluodynamics with Theta Angle,” Eur. Phys. J. C 24, 137–141 (2002).

    Article  ADS  MATH  Google Scholar 

  63. A. M. Khvedelidze and D. M. Mladenov, “Euler-Calogero-Moser System from SU(2) Yang-Mills Theory,” Phys. Rev. D: Part. Fields 62, 125016 (2000).

    Article  MathSciNet  ADS  Google Scholar 

  64. A. M. Khvedelidze and D. M. Mladenov, “Generalized Calogero-Sutherland Models from Geodesic Motion on GL(n,R) Group Manifold,” Phys. Lett. A 299, 522–530 (2002).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  65. A. M. Khvedelidze and D. M. Mladenov, “Classical Mechanics on GL(n,R) Group and Euler-Calogero-Sutherland Model,” Yad. Fiz. 65, 1–6 (2002) [Phys. At. Nucl. 65, 1042 (2002)].

    MathSciNet  Google Scholar 

  66. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 7: Theory of Elasticity (Nauka, Moscow, 1982; Pergamon Press, New York, 1986).

    Google Scholar 

  67. J. H. C. Whitehead, “An Expression of Hopf’s Invariant as an Integral,” Proc. Nat. Acad. Sci. USA 33, 117–123 (1947).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  68. L. Woltjer, “A Theorem on Force-Free Magnetic Fields,” Proc. Nat. Acad. Sci. USA 44, 489–491 (1958).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  69. H. Moffat, “The Degree of Knottedness of Tangled Vortex Lines,” J. Fluid Mech. 35, 117–129 (1969).

    Article  ADS  Google Scholar 

  70. E. A. Kuznetsov and A. V. Mikhailov, “On the Topological Meaning of Canonical Clebsch Variables,” Phys. Lett. A 77, 37–38 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  71. P. G. Saffman, Vortex Dynamics (Cambridge Univ., Cambridge, 1992).

    MATH  Google Scholar 

  72. R. Jackiw and S. Y. Pi, “Creation and Evolution of Magnetic Helicity,” Phys. Rev. D: Part. Fields 61,105015 (2000).

    Google Scholar 

  73. R. Jackiw, V. P. Nair, and S. Y. Pi, “Chern-Simons Reduction and Non-Abelian Fluid Mechanics,” Phys. Rev. D: Part. Fields 62, 085018 (2000).

    Article  MathSciNet  ADS  Google Scholar 

  74. R. A. Battye and P. Sutcliffe, “Solitons, Links and Knots,” Proc. R. Soc. London A 455, 4305–4331 (1999).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  75. L. Faddeev and A. J. Niemi, “Partially Dual Variables in SU(2) Yang-Mills Theory,” Phys. Rev. Lett. 82, 1624–1627 (1999).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  76. E. Langmann and A. J. Niemi, “Towards a String Representation of Infrared SU(2) Yang-Mills Theory,” Phys. Lett. B 463, 252–256 (1999).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  77. C. Procesi and G. W. Schwarz, “The Geometry of Orbit Spaces and Gauge Symmetry Breaking in Supersymmetric Gauge Theories,” Phys. Lett. B 161, 117–121 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  78. C. Procesi and G. W. Schwarz, “Inequalities Defining Orbit Space,” Invent. Math. 81, 539–554 (1985).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  79. A. M. Khvedelidze and H.-P. Pavel, “On the Ground State of Yang-Mills Quantum Mechanics,” Phys. Lett. A 267, 96–100 (2000).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  80. A. M. Khvedelidze, H.-P. Pavel, and G. Röpke, “Unconstrained SU(2) Yang-Mills Quantum Mechanics with Theta Angle,” Phys. Rev. D: Part. Fields 61, 025017 (2000).

    Article  ADS  Google Scholar 

  81. J. Anandan and Y. Aharonov, “Geometric Quantum Phase and Angles,” Phys. Rev. D: Part. Fields 38, 1863–1870 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  82. P. Lancaster, Theory of Matrices (Academic Press, New York, 1969; Nauka, Moscow, 1982).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.M. Khvedelidze, 2011, published in Fizika Elementarnykh Chastits i Atomnogo Yadra, 2011, Vol. 42, No. 3.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khvedelidze, A.M. Hamiltonian reduction of SU(2) gluodynamics. Phys. Part. Nuclei 42, 414–437 (2011). https://doi.org/10.1134/S1063779611030051

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779611030051

Keywords

Navigation