Physics of Particles and Nuclei

, Volume 42, Issue 2, pp 251–301 | Cite as

Astrophysical S factors of reactions with light nuclei

Article

Abstract

The two-cluster model is a phenomenological semi-microscopic approach to the study of multinucleon nuclear systems. In the framework of this model, interaction of nucleon clusters is described by the local two-body potential determined from the condition of description of data on cluster scattering and properties of their bound states. In this case the many-body character of the problem is taken into account approximately in terms of Pauli-allowed and Pauli-forbidden states of the total nucleon system. Accounting for the dependence of cluster interaction potential on orbital Young schemes characterizing the properties of permutation symmetry in the nucleon system is an important ingredient of the model. This approach is used for examination of photonuclear processes for p2H, p3H, p6Li, p12C and 4He12C, 3He4He, 3H4He, 2H4He systems and corresponding astrophysical S factors. It is demonstrated that this approach provides fairly good description of the data available in the low-energy region, especially for systems with the number of nucleons A > 4 when errors for the phase shifts of cluster scattering extracted from experimental data are minimal.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Essays in Nuclear Astrophysics, Ed. by C. A. Barnes, D. Clayton, and D. Schramm (Cambridge Univ., Cambridge, 1982; Mir, Moscow, 1986).Google Scholar
  2. 2.
    E. Epelbaum, W. Glockle, and U. G. Meissner, “The Two-Nucleon System at Next-to-Next-to-Next-to-Leading Order,” Nucl. Phys. A 747, 362–424 (2005); A. Epelbaum et al., “Three-Nucleon Forces from Chiral Effective Field Theory,” Phys. Rev. C 66, 064001-1-064001-17 (2002); E. Epelbaum, “Four-Nucleon Force Using the Method of Unitary Transformation,” Eur. Phys. J. A 34, 197–214 (2007).ADSGoogle Scholar
  3. 3.
    L. D. Faddeev, “Scattering Theory for a Three Particle System,” Zh. Eksp. Teor. Fiz. 39, 1459–1467 (1960) [Sov. Phys. JETP 12, 1014 (1961)].MathSciNetGoogle Scholar
  4. 4.
    O. A. Yakubovskii, “On the Integral Equations in the Theory of N Particle Scattering,” Yad. Fiz. 5, 1312–1320 (1967) [Sov. J. Nucl. Phys. 5, 937 (1967)].Google Scholar
  5. 5.
    P. Grassberger and W. Sandhas, “Systematical Treatment of the Non-Relativistic N-Particle Scattering Problem,” Nucl. Phys. B 2, 181–206 (1967); E._O. Alt, P. Grassberger, and W. Sandhas, “Systematical and Practical Treatment of the Few-Body Problem,” JINR Report No. E4-6688 (Dubna, 1972).ADSGoogle Scholar
  6. 6.
    A. Deltuva and A. C. Fonseca, “Four-Body Calculation of Proton — 3He Scattering,” Phys. Rev. Lett. 98, 162502-1–162502-4 (2007); “Ab Intio Four-Body Calculation of n-3He, p-3H, and d-d Scattering,” Phys. Rev. C 76, 021001-1(R)-0211001-4(R) (2007).ADSGoogle Scholar
  7. 7.
    R. Lazauskas, “Elastic Proton Scattering on Tritium Below the n-3He Threshold,” Phys. Rev. C 79, 054007-1–054007-5 (2009).ADSGoogle Scholar
  8. 8.
    Y. C. Tang, M. Lemere, and D. R. Thompson, “Resonating-Group Method for Nuclear Many-Body Problems,” Phys. Rep. 47, 167–223 (1978).ADSGoogle Scholar
  9. 9.
    P. Navratil, J. P. Vary, and B. R. Barrett, “Properties of 12C in the Ab Initio Nuclear Shell Model,” Phys. Rev. Lett. 84, 5728–5731 (2000).ADSGoogle Scholar
  10. 10.
    S. Quaglioni and P. Navratil, “Ab Initio Many-Body Calculations of n-3H, n-4He, p-3,4He, and n-10Be Scattering,” Phys. Rev. Lett. 101, 092501-1–092501-4 (2008).ADSGoogle Scholar
  11. 11.
    A. Kievsky, M. Viviany, and S. Rosati, “Polarization Observables in p-d Elastic Scattering below 30 MeV,” Phys. Rev. C 64, 024002-1–024002-18 (2001).ADSGoogle Scholar
  12. 12.
    O. F. Nemets, V. G. Neudatchin, A. T. Rudchik, et al., Nucleon Clustering in Nuclei and Nuclear Reactions of Multinucleon Transfer (Naukova Dumka, Kiev, 1988) [in Russian].Google Scholar
  13. 13.
    M. K. Baktybaev et al., “The Scattering of Protons from 6Li and 7Li nuclei,” in Proceedings of the 4th Eurasian Conference on Nuclear Science and its Application, Oct. 31–Nov. 3, 2006, Baku, Azerbaijan (2006), p. 62; N. Burtebaev et al., “The New Experimental Data on the Elastic Scattering of Protons from 6Li, 7Li, 16O and 27Al Nuclei,” in Proceedings of the 5th Eurasian Conference on Nuclear Science and its Application, Oct. 14–17, 2008, Turkey, Ankara (2008), p. 40.Google Scholar
  14. 14.
    D. M. Zazulin et al., “Scattering of Protons from 12C,” in Proceedings of the 6th International Conference on Modern Problems of Nuclear Physics, Sept. 19–22, 2006, Tashkent, Uzbekistan (2006), p. 127; M. K. Baktybaev et al., “Elastic Scattering of Protons from 12C, 16O and 27Al,” in Proceedings of the 4th Eurasian Conference on Nuclear Science and its Application, Oct. 31–Nov. 3, 2006, Baku, Azerbaijan (2006), p. 56.Google Scholar
  15. 15.
    V. G. Neudatchin et al., “Generalized Potential-Model Description of Mutual Scattering of the Lightest p + d, d + 3He Nuclei and the Corresponding Photonuclear Reactions,” Phys. Rev. C 45, 1512–1527 (1992).ADSGoogle Scholar
  16. 16.
    S. B. Dubovichenko, “Photoprocesses in Nd and d 3He Systems on the Base of Cluster Models for Potentials with Forbidden States,” Yad. Fiz. 58, 1253–1259 (1995) [Phys. At. Nucl. 58, 1174 (1995)].Google Scholar
  17. 17.
    L. Wildermuth and Ya. Tang, A Unified Theory of the Nucleus (Vieweg, Braunschweig, 1977; Mir, Moscow, 1980).Google Scholar
  18. 18.
    W. A. Fowler, G. R. Caughlan, and B. A. Zimmerman, “Thermonuclear Reaction Rates, II,” Ann. Rev. Astron. Astrophys. 13, 69–112 (1975).ADSGoogle Scholar
  19. 19.
    P. J. Mohr and B. N. Taylor, “CODATA Recommended Values of the Fundamental Physical Constants: 2002,” Rev. Mod. Phys. 77, 1–107 (2005).ADSGoogle Scholar
  20. 20.
    C. Angulo et al., “A Compilation of Charged-Particle Induced Thermonuclear Reaction Rates,” Nucl. Phys. A 656, 3–183 (1999).MathSciNetADSGoogle Scholar
  21. 21.
    S. B. Dubovichenko, Properties of Light Atomic Nuclei in the Potential Cluster Model (Daneker, Almaty, 2004) [in Russian]. http://xxx.lanl.gov/abs/1006.4944.Google Scholar
  22. 22.
    D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii, Quantum Theory of Angular Momentum (Nauka, Leningrad, 1975; World Sci., Singapore, 1988).Google Scholar
  23. 23.
  24. 24.
    J. Eisenberg and W. Greiner, Nuclear Theory, Vol. 2: Excitation Mechanisms of the Nucleus, 3rd ed. (North Holland, Amsterdam, 1987; Atomizdat, Moscow, 1973).Google Scholar
  25. 25.
    S. B. Dubovichenko, Calculation Methods for Nuclear Characteristics (Kompleks, Almaty, 2006) [in Russian]. http://xxx.lanl.gov/abs/1006.4947.Google Scholar
  26. 26.
    G. R. Plattner and R. D. Viollier, “Coupling Constants of Commonly Used Nuclear Probes,” Nucl. Phys. A 365, 8–12 (1981).ADSGoogle Scholar
  27. 27.
    G. I. Marchuk and V. E. Kolesov, Application of Numerical Methods for Calculation of Neutron Cross Sections (Atomizdat, Moscow, 1970) [in Russian].Google Scholar
  28. 28.
    Handbook of Mathematical Functions, Ed. by M. Abramowitz and I. Stegun (Nation. Bureau of Standards, New York, 1964; Moscow, Nauka, 1979).MATHGoogle Scholar
  29. 29.
    A. Barnet et al., “Coulomb Wave Function for All Real η and ρ,” Comput. Phys. Commun. 8, 377–395 (1974).ADSGoogle Scholar
  30. 30.
    S. B. Dubovichenko and L. S. Chechin, “Calculation Methods of Coulomb Functions and Scattering Phases,” Vestn. Kaz. NPU, Fiz. Mat., No. 1(7), 115–122 (2003).Google Scholar
  31. 31.
    C. Itzykson and M. Nauenberg, “Unitary Groups: Representations and Decompositions,” Rev. Mod. Phys. 38, 95–101 (1966).MATHMathSciNetADSGoogle Scholar
  32. 32.
    P. E. Hodgson, Optical Model of Elastic Scattering (Clarendon, Oxford, 1963; Atomizdat, Moscow, 1966).MATHGoogle Scholar
  33. 33.
    S. B. Dubovichenko, “Partial Wave Analysis of Elastic 4He4He — Scattering in the Energy Range 40–50 MeV,” Yad. Fiz. 71, 66–75 (2008) [Phys. At. Nucl. 71, 65 (2008)].Google Scholar
  34. 34.
    S. B. Dubovichenko, N. Zh. Takibaev, and L. M. Chechin, The Physical Processes in Distant and Near Cosmos (Daik-Press, Almaty, 2008) [in Russian]. http://xxx.lanl.gov/abs/1012.1705.Google Scholar
  35. 35.
    V. I. Kukulin et al., “Detailed Study of the Cluster Structure of Light Nuclei in a Three-Body Model: (I). Ground State of 6Li,” Nucl. Phys. A 417, 128–156 (1984).ADSGoogle Scholar
  36. 36.
    L. A. Skornyakov, Elements of General Algebra (Nauka, Moscow, 1990) [in Russian].Google Scholar
  37. 37.
    B. A. Popov and G. S. Tesler, Computation of Functions on Electronic Computers, the Handbook (Naukova Dumka, Kiev, 1984) [in Russian].Google Scholar
  38. 38.
    G. Korn and T. Korn, Mathematical Handbook for Scientists and Engineers (McGraw-Hill, New York, 1967; Nauka, Moscow, 1973).Google Scholar
  39. 39.
    S. B. Dubovichenko and L. S. Chechin, “Method for Solving of the Generalized Problem on Eigenvalues,” Vestn. Kaz. NPU, Fiz. Mat., No. 1 (7), 110–115 (2003); S. B. Dubovichenko, “Some Methods for Solving of Bound States Nuclear Physics Tasks,” Vestn. Kaz. NPU, Fiz. Mat., No. 1, 49–58 (2008).Google Scholar
  40. 40.
    S. G. Mikhlin and Kh. L. Smolitskii, Approximate Methods for Solving Differential and Integral Equations (Nauka, Moscow, 1965) [in Russian].Google Scholar
  41. 41.
    S. B. Dubovichenko and L. M. Chechin, “Modern Programming Methods of Actual Physical Tasks,” in Proceedings of the Conference on Modern Problems and Tasks of Informatization in Kazakhstan (KazNTU, Kazakhstan, Almaty) [in Russian].Google Scholar
  42. 42.
    S. B. Dubovichenko, “Alternative Method for Solving of the Generalized Matrix Problem on Eigenvalues,” Izv. NAN RK, Fiz. Math., No. 4, 52–55 (2007).Google Scholar
  43. 43.
    W. A. Fowler, “Experimental and Theoretical Nuclear Astrophysics: The Quest for the Origin of the Elements, Nobel Lecture (Stockholm, 8 Dec. 1983); Usp. Fiz. Nauk 145, 441–488 (1985).ADSGoogle Scholar
  44. 44.
    K. A. Snover, “Solar p-p Chain and the 7Be(p, γ)8B S-Factor,” CEPRA. NDM03 1/6/2008 (Univ. of Washington, 2008).Google Scholar
  45. 45.
    S. B. Dubovichenko and A. V. Dzhazairov-Kakhramanov, “Astrophysical S-Factor of the Radiative p 2H Capture,” Eur. Phys. J. A 39, 139–143 (2009).ADSGoogle Scholar
  46. 46.
    R. Schiavilla, V. R. Pandaripande, and R. B. Wiringa, “Momentum Distributions in A = 3 and 4 Nuclei,” Nucl. Phys. A 449, 219–242 (1986).ADSGoogle Scholar
  47. 47.
    Yu. N. Uzikov, “Backward Elastic p 3He Scattering and High Momentum Components of 3He Wave Function,” Phys. Rev. C 58, 36–39 (1998).ADSGoogle Scholar
  48. 48.
    Yu. N. Uzikov and J. Haidenbauer, “3He Structure and Mechanism of p 3He Elastic Scattering,” Phys. Rev. C 68, 014001-1–014001-6 (2003).ADSGoogle Scholar
  49. 49.
    P. Schmelzbach et al., “Phase Shift Analysis of p 2H Elastic Scattering,” Nucl. Phys. A 197, 273–289 (1972); J. Arvieux, “Analyse en Dephasages des Sections Efficaces et Polarisations dans la Diffusion Elastique p 2H,” Nucl. Phys. A 102, 513–528 (1967); J. Chauvin and J. Arvieux, “Phase Shift Analysis of Spin Correlation Coefficients in p 2H Scattering,” Nucl. Phys. A 247, 347–358 (1975); E. Huttel et al., “Phase Shift Analysis of p 2H Elastic Scattering below Break — Up Threshold,” Nucl. Phys. A 406, 443–455 (1983).ADSGoogle Scholar
  50. 50.
    S. B. Dubovichenko and A. V. Dzhazairov-Kakhramanov, “Potential Description of the Elastic Nd, dd, Nα and dτ Scattering,” Yad. Fiz. 51, 1541–1550 (1990) [Sov. J. Nucl. Phys. 51, 971 (1990)].Google Scholar
  51. 51.
    G. M. Griffiths, E. A. Larson, and L. P. Robertson, “The Capture of Proton by Deuteron,” Can. J. Phys. 40, 402–411 (1962).ADSGoogle Scholar
  52. 52.
    L. Ma et al., “Measurements of 1H(d, γ)3He and 2H(p, γ)3He at Very Low Energies,” Phys. Rev. C 55, 588–596 (1997).ADSGoogle Scholar
  53. 53.
    G. J. Schimd et al., “The 2H(p, γ)3He and 1H(d, γ)3He Reactions Below 80 KeV,” Phys. Rev. C 56, 2656–2681 (1997).Google Scholar
  54. 54.
    C. Casella et al., “First Measurement of the d(p, γ)3He Cross Section down to the Solar Gamow Peak,” Nucl. Phys. A 706, 203–216 (2002).ADSGoogle Scholar
  55. 55.
    S. B. Dubovichenko, “Astrophysical S-factor of Radiation p 2H Capture at Low Energies,” Doklady NAN RK 60(3), 33–38 (2008).Google Scholar
  56. 56.
    D. R. Tilley, H. R. Weller, and H. H. Hasan, “Energy Levels of Light Nuclei A = 3,” Nucl. Phys. A 474, 1–60 (1987).ADSGoogle Scholar
  57. 57.
    D. R. Tilley, H. R. Weller, and G. M. Hale, “Energy Levels of Light Nuclei A = 4,” Nucl. Phys. A 541, 1–157 (1992).ADSGoogle Scholar
  58. 58.
    D. A. Kirzhnits, “Does the Triton Contain a Deuteron?” Pis’ma Zh. Eksp. Teor. Fiz. 28, 479–481 (1978) [JETP Lett. 28, 444 (1978)].Google Scholar
  59. 59.
    L. D. Blokhintsev, I. Borbei, and E. I. Dolinskii, “Nuclear Vertex Constants,” Fiz. Elem. Chastits At. Yadra 8, 1189–1245 (1977) [Sov. J. Part. Nucl. 8, 485 (1977)].Google Scholar
  60. 60.
    M. Bornard et al., “Coupling Constants for Several Light Nuclei from a Dispersion Analysis of Nucleon and Deuteron Scattering Amplitudes,” Nucl. Phys. A 294, 492–512 (1978).ADSGoogle Scholar
  61. 61.
    G. R. Plattner, M. Bornard, and R. D. Viollier, “Accurate Determination of the 3He-pd and 3He-pd* Coupling Constants,” Phys. Rev. Lett. 39, 127–130 (1977).ADSGoogle Scholar
  62. 62.
    A. Kievsky et al., “The Three-Nucleon System near the N-d Threshold,” Phys. Lett. A 406, 292–296 (1997).Google Scholar
  63. 63.
    Z. Ayer et al., “Determination of the Asymptotic D- to S-State Ratio for 3He via (d, 3He) Reactions,” Phys. Rev. C 52, 2851–2858 (1995).ADSGoogle Scholar
  64. 64.
    G. J. Schimd et al., “Effects of Non-Nucleonic Degrees of Freedom in the d(p, γ)3He and p(d, γ)3He Reactions,” Phys. Rev. Lett. 76, 3088–3091 (1996).ADSGoogle Scholar
  65. 65.
    G. J. Schimd et al., “Polarized Proton Capture by Deuterium and the 2H(p, γ)3He Astrophysical S-Factor,” Phys. Rev. 52, R1732–R1732 (1995).ADSGoogle Scholar
  66. 66.
    M. Viviani, R. Schiavilla, and A. Kievsky, “Theoretical Study of the Radiative Capture Reactions 2H(N, γ)3H and 2H(p, γ)3He at Low Energies,” Phys. Rev. C 54, 534–553 (1996).ADSGoogle Scholar
  67. 67.
    S. B. Dubovichenko and A. V. Dzhazairov-Kakhramanov, “Electromagnetic Effects on Light Nuclei on the Basis of Potential Cluster Model,” Fiz. Elem. Chastits At. Yadra 28, 1529–1594 (1997) [Phys. Part. Nucl. 28, 615 (1997)].Google Scholar
  68. 68.
    J. B. Warren et al., “Photodisintegration of He3 near the Threshold,” Phys. Rev. 132, 1691–1692 (1963).ADSGoogle Scholar
  69. 69.
    B. L. Berman, L. J. Koester, and J. H. Smith, “Photo-disintegration of 3He,” Phys. Rev. 133, B117–B129 (1964).ADSGoogle Scholar
  70. 70.
    V. N. Fetisov, A. N. Gorbunov, and A. T. Varfolomeev, “Nuclear Photoeffect on Three-Particle Nuclei,” Nucl. Phys. A 71, 305–342 (1965).Google Scholar
  71. 71.
    G. Ticcioni et al., “The Two-Body Photodisintegration of 3He,” Phys. Lett. A 46, 369–371 (1973).Google Scholar
  72. 72.
    K. N. Geller, E. G. Muirhead, and L. D. Cohen, “The 2H(p, γ)3He Reaction at the Breakup Threshold,” Nucl. Phys. A 96, 397–400 (1967).ADSGoogle Scholar
  73. 73.
    S. B. Dubovichenko, “Phase Shift Analysis of p 12C Scattering at Astrophysical Energies,” Izv. Vyssh. Uchebn. Zaved., Ser. Fiz., No. 11, 21–27 (2008).Google Scholar
  74. 74.
    H. Berg et al., “Differential Cross Section, Analyzing Power and Phase Shifts for p 3He Elastic Scattering below 1.0 MeV,” Nucl. Phys. A 334, 21–34 (1980); R. W. Kavanagh and P. D. Parker, “He + p Elastic Scattering below 1 MeV,” Phys. Rev. 143, 779–782 (1966); L. Morrow and W. Haeberli, “Proton Polarization in p-3He Elastic Scattering between 4 and 11 MeV,” Nucl. Phys. A 126, 225–232 (1969).ADSGoogle Scholar
  75. 75.
    S. B. Dubovichenko, V. G. Neudatchin, A. A. Sakharuk, and Yu. F. Smirnov, “Generalized Potential Description of Interaction of the Lightest Nuclei pt and pH,” Izv. AN SSSR, Ser. Fiz. 54, 911–916 (1990); V. G. Neudatchin, A. A. Sakharuk, and S. V. Dubovichenko, “Photodisintegration of 4He and Surermultiplet Potential Model of Cluster-Cluster Interaction,” Few Body System 18, 159–172 (1995).Google Scholar
  76. 76.
    S. B. Dubovichenko, “Photoprocesses in p 3H and n 3Ne Channels of 4He Nuclei on the Basis of Potential Cluster Models,” Yad. Fiz. 58, 1377–1384 (1995) [Phys. At. Nucl. 58, 1295 (1995)].Google Scholar
  77. 77.
    T. A. Tombrello, “Phase Shift Analysis for 3He(p, p)3He,” Phys. Rev. 138, B40–B47 (1965).ADSGoogle Scholar
  78. 78.
    Y. Yoshino et al., “Phase Shift of p 3He Scattering at Low Energies,” Prog. Theor. Phys. 103, 107–125 (2000).ADSGoogle Scholar
  79. 79.
    D. H. McSherry and S. D. Baker, “3He Polarization Measurements and Phase Shifts for p 3He Elastic Scattering,” Phys. Rev. C 1, 888–892 (1970).ADSGoogle Scholar
  80. 80.
    L. Drigo and G. Pisent, “Analysis of the p 3He Low Energy Interaction,” Nuovo Cimento B 51, 419–436 (1967).ADSGoogle Scholar
  81. 81.
    G. Szaloky and F. Seiler, “Phase Shift Analysis of 3He(p, p)3He Elastic Scattering,” Nucl. Phys. A 303, 57–66 (1978).ADSGoogle Scholar
  82. 82.
    T. A. Tombrello et al., “The Scattering of Protons from 3He,” Nucl. Phys. 39, 541–550 (1962).Google Scholar
  83. 83.
    J. S. McIntosh, R. L. Gluckstern, and S. Sack, “Proton Triton Interaction,” Phys. Rev. 88, 752–759 (1952).ADSGoogle Scholar
  84. 84.
    R. M. Frank and J. L. Gammel, “Elastic Scattering of Protons by 3He and T,” Phys. Rev. 99, 1406–1410 (1955).ADSGoogle Scholar
  85. 85.
    R. Kankowsky et al., “Elastic Scattering of Polarized Protons on Tritons between 4 and 12 MeV,” Nucl. Phys. A 263, 29–46 (1976).ADSGoogle Scholar
  86. 86.
    Yu. M. Arkatov et al., “Study of 4He(γ, p)3H Reaction at Maximum Energy of γ Radiation 120 MeV,” Yad. Fiz. 12, 227–233 (1970) [Sov. J. Nucl. Phys. 12, 123 (1970)].Google Scholar
  87. 87.
    K. Hahn et al., “3H(p, γ)4He Cross Section,” Phys. Rev. C 51, 1624–1632 (1995).ADSGoogle Scholar
  88. 88.
    R. Canon et al., “3H(p, γ)4He Reaction below E p = 80 KeV,” Phys. Rev. C 65, 044008.1–044008.7 (2002).ADSGoogle Scholar
  89. 89.
    S. B. Dubovichenko, “Astrophysical S-Factor of p 3H Radiative Capture at Low Energies,” Izv. NAN RK, Ser. Fiz.-Mat., No. 4, 89–92 (2008); S. V. Dubovichenko and A. V. Dzhazairov-Kakhramanov, “Astrophysical S-Factors of the p 2H and p 3H Radiative Capture at Low Energies,” Uz. J. Rhys. 10, 364–370 (2008).Google Scholar
  90. 90.
    T. K. Lim, “3He-n Vertex Constant and Structure of 4He,” Phys. Lett. B 55, 252–254 (1975).ADSGoogle Scholar
  91. 91.
    B. F. Gibson, “Electromagnetic Disintegration of the A = 3 and A = 4 Nuclei,” Nucl. Phys. A 353, 85–98 (1981).ADSGoogle Scholar
  92. 92.
    J. E. Perry and S. J. Bame, “3H(p, γ)4He Reaction,” Phys. Rev. 99, 1368–1375 (1955).ADSGoogle Scholar
  93. 93.
    F. Balestra et al., “Photodisintegration of 4He in Giant-Resonance Region,” Nuovo Cim. A 38, 145–166 (1977).ADSGoogle Scholar
  94. 94.
    W. Meyerhof et al., “3He(p, γ)4He reaction from 3 to 18 MeV,” Nucl. Phys. A 148, 211he t s of Light Atomic Nuclei 211–224 (1970).ADSGoogle Scholar
  95. 95.
    G. Feldman et al., “3H(p, γ)4He Reaction and the (γ, p)/(γ, n) Ratio in 4He,” Phys. Rev. C 42, R1167–R1170 (1990).ADSGoogle Scholar
  96. 96.
    M. Skill et al., “Differential Cross Section and Analyzing Power for Elastic Scattering of Protons on 6Li below 2.2 MeV,” Nucl. Phys. A. A581, 93–106 (1995).ADSGoogle Scholar
  97. 97.
    C. Petitjean, L. Brown, and R. Seyler, “Polarization and Phase Shifts in 6Li(p, p)6Li from 0.5 to 5.6 MeV,” Nucl. Phys. A 129, 209–219 (1969).ADSGoogle Scholar
  98. 98.
    S. B. Dubovichenko, A. V. Dzhazairov-Kakhramanov, and A. A. Sakharuk, “Potential Description of Elastic N6Li and αt Scattering,” Yad. Fiz. 56, 90–106 (1993) [Phys. At. Nucl. 56, 762 (1993)].Google Scholar
  99. 99.
    D. R. Tilley et al., “Energy Levels of Light Nuclei A = 5,6,7,” Nucl. Phys. A 708, 3–163 (2002).ADSGoogle Scholar
  100. 100.
    I. M. Kapitonov, B. S. Ishkhanov, and I. A. Tutyn’, Nucleosynthesis in the Universe (Librokom, Moscow, 2009); http://nuclphys.sinp.msu.ru/nuclsynt.html [in Russian].Google Scholar
  101. 101.
    V. G. Neudatchin, A. A. Sakharuk, and Yu. F. Smirnov, “Generalized Potential Description of Interaction of the Lightest Cluster Scattering and Photonuclear Reactions,” Fiz. Elem. Chastits At. Yadra 23, 480–541 (1992) [Sov. J. Part. Nucl. 23, 210 (1992)]; V. G. Neudachin, B. G. Struzhko, and V. M. Lebedev, “Supermultiplet Potential Model of Interaction between the Lightest Clusters and a Unified Description of Various Nuclear Reactions,” Fiz. Elem. Chastits At. Yadra 36, 888–941 (2005) [Phys. Part. Nucl. 36, 468 (2005)].Google Scholar
  102. 102.
    Z. E. Switkowski et al., “Cross Section of the Reaction 6Li(p, γ)7Be,” Nucl. Phys. A 331, 50–60 (1979); R. Bruss et al., “Astrophysical S-Factors for the Radiative Capture Reaction 6Li(p, γ)7Be at Low Energies,” in Proceedings of the 2nd Intern. Symposium on Nuclear Astrophysics, Nuclei in the Cosmos, Karlsruhe, Germany, 6–10 July, 1992, Ed. by F. Kappeler and K. Wisshak (IOP Publ., Bristol, UK, 1993), p. 169.ADSGoogle Scholar
  103. 103.
    K. Arai, D. Baye, and P. Descouvemont, “Microscopic Study of the 6Li(p, γ)7Be and 6Li(p, α)3He Reactions,” Nucl. Phys. A 699, 963–975 (2002).ADSGoogle Scholar
  104. 104.
    R. M. Prior et al., “Energy Dependence of the Astrophysical S Factor for the 6Li(p, γ)7Be Reaction,” Phys. Rev. C 70, 055801–055809 (2004).ADSGoogle Scholar
  105. 105.
    F. C. Burker, “Neutron and Proton Capture by 6Li,” Austr. J. Phys. 33, 159–176 (1980).ADSGoogle Scholar
  106. 106.
    F. E. Cecil et al., “Radiative Capture of Protons by Light Nuclei at Low Energies,” Nucl. Phys. A 539, 75–96 (1992).ADSGoogle Scholar
  107. 107.
    S. B. Dubovichenko, “Astrophysical S-Factors of p 2H and p 3H Radiative Capture,” Izv. Vyssh. Uchebn. Zaved., Ser. Fiz., No. 3, 68–73 (2009).Google Scholar
  108. 108.
    S. B. Dubovichenko and A. V. Dzhazairov-Kakhramanov, “Astrophysical S-Factor of p 6Li Radiative Capture,” Dokl. NAN RK, No. 6, 41–45 (2009).Google Scholar
  109. 109.
    M. F. Jahns and E. M. Bernstein, “Polarization in pα Scattering,” Phys. Rev. 162, 871–877 (1967).ADSGoogle Scholar
  110. 110.
    A. Barnard, C. Jones, and J. Well, “Elastic Scattering of 2–11 MeV Proton by 4He,” Nucl. Phys. 50, 604–620 (1964).Google Scholar
  111. 111.
    R. I. Brown, W. Haeberli, and J. X. Saladin, “Polarization in the Scattering of Protons by α Particles,” Nucl. Phys. 47, 212–213 (1963).Google Scholar
  112. 112.
    H. L. Jackson et al., “The 12C(p, p)12C Differential Cross Section,” Phys. Rev. 89, 365–369 (1953).ADSGoogle Scholar
  113. 113.
    H. L. Jackson et al., “The Excited States of the 13N Nucleus,” Phys. Rev. 89, 370–374 (1953).ADSGoogle Scholar
  114. 114.
    S. J. Moss and W. Haeberli, “The Polarization of Protons Scattered by Carbon,” Nucl. Phys. 72, 417–435 (1965).Google Scholar
  115. 115.
    A. C. L. Barnard et al., “Cross Section as a Function of Angle and Complex Phase Shifts for the Scattering of Protons from 12C,” Nucl. Phys. 86, 130–144 (1966).Google Scholar
  116. 116.
    V. G. Neudatchin and Yu. F. Smirnov, Nucleon Associations in Light Nuclei (Nauka, Moscow, 1969) [in Russian].Google Scholar
  117. 117.
    F. Ajzenberg-Selove, “Energy Levels of Light Nuclei A = 13,14,” Nucl. Phys. A 523, 1–116 (1991).ADSGoogle Scholar
  118. 118.
    F. Ajzenberg-Selove, “Energy Levels of Light Nuclei A = 12,” Nucl. Phys. A 506, 1–186 (1990).ADSGoogle Scholar
  119. 119.
    N. Burtebaev et al., “New Measurements of the Astrophysical S Factor for 12C(p, γ)13N Reaction at Low Energies and the Asymptotic Normalization Coefficient (Nuclear Vertex Constant) for p + 12C → 13N Reaction,” Phys. Rev. C 78, 035802–035813 (2008).ADSGoogle Scholar
  120. 120.
    S. B. Dubovichenko and A. V. Dzhazairov-Kakhramanov, “Astrophysical S-Factor of p 12C → 13Nγ Radiative Capture,” Izv. Vyssh. Uchebn. Zaved., Ser. Fiz., No. 8, 58–64 (2009).Google Scholar
  121. 121.
    E. E. Salpeter, “Nuclear Reactions in Stars,” Phys. Rev. 107, 516–525 (1957); E. E. Salpeter, “Nuclear Reactions in Stars without Hydrogen,” Astrophys. J. 115, 326 (1952); C. Rolfs, “Nuclear Reactions in Stars Far below the Coulomb Barrier,” Progress Part. Nucl. Phys. 59, 43 (2007).ADSGoogle Scholar
  122. 122.
    D. Schurmann et al., arXiv:nucl-ex/0511050v1 (2005).Google Scholar
  123. 123.
    S. B. Dubovichenko, “Phase Shift Analysis of 4He4He Scattering at 40–50 MeV,” Izv. Vyssh. Uchebn. Zaved., Ser. Fiz., No. 6, 74–79 (2007).Google Scholar
  124. 124.
    C. M. Jones et al., “The Scattering of Alpha Particles from 12C,” Nucl. Phys. 37, 1–9 (1962).Google Scholar
  125. 125.
    S. B. Dubovichenko, “Photoprocesses in 4He12C Channel of 16O Nucleus on the Basis of Potential Cluster Model,” Yad. Fiz. 59, 447–553 (1996) [Phys. At. Nucl. 59, 421 (1996)].Google Scholar
  126. 126.
    R. Plaga et al., “The Scattering of Alpha Particles from 12C and the 12C(α, γ)16O Stellar Reaction Rate,” Nucl. Phys. A 465, 291–316 (1987).ADSGoogle Scholar
  127. 127.
    D. R. Tilley, H. R. Weller, and C. M. Cheves, “Energy Levels of Light Nuclei A = 16−17,” Nucl. Phys. A 564, 1–183 (1993).ADSGoogle Scholar
  128. 128.
    S. B. Dubovichenko, N. T. Burtebaev, A. V. Dzhazairov-Kakhramanov, and D. M. Zazulin, “Phase Shift Analysis and Potential Description of Elastic 4He12C Scattering at Low Energies,” Izv. Vyssh. Uchebn. Zaved., Ser. Fiz., No. 7, 55–62 (2009).Google Scholar
  129. 129.
    S. B. Dubovichenko and A. V. Dzhazairov-Kakhramanov, “Astrophysical S-Factor of 4He12C Radiative Capture at Low Energies,” Dokl. NAN RK, No. 3, 30–36 (2009).Google Scholar
  130. 130.
    K. U. Kettner et al., “The 4He(12C, γ)16O Reaction at Stellar Energies,” Z. Phys. A 308, 73–94 (1982).ADSGoogle Scholar
  131. 131.
    P. Dyer and C. A. Barnes, “The 12C(α, γ)16O Reaction and Stellar Helium Burning,” Nucl. Phys. A 233, 495–520 (1974).ADSGoogle Scholar
  132. 132.
    C. R. Brune et al., “Sub-Coulomb α Transfers on 12C and the 12C(α, γ)16O S Factor,” Phys. Rev. Lett. 83, 4025–4028 (1999).ADSGoogle Scholar
  133. 133.
    R. E. Asuma et al., “Constraints on the Low — Energies E1 Cross Section of 12C(α, γ)16O from the β — Delayed α Spectrum of 16N,” Phys. Rev. C 50, 1194–1215 (1994).ADSGoogle Scholar
  134. 134.
    P. Descouvemont and D. Baye, “12C(α, γ)16O Reaction in a Multi Configuration Microscopic Model,” Phys. Rev. C 36, 1249–1255 (1987).ADSGoogle Scholar
  135. 135.
    G. Imbriani, “Underground Laboratory Studies of pp and CNO. Some Astrophysical Consequences. LUNA,” in Proceedings of the 3rd European Summer School on Experimental Nuclear Astrophysics, Oct. 2–9, 2005, S. Tecla, Catania, Sicily, Italy.Google Scholar
  136. 136.
    A. Caciolli et al., “Ultra-Sensitive in-Beam γ-Ray Spectroscopy for Nuclear Astrophysics at LUNA,” Eur. Phys. J. A 39, 179–186 (2009).ADSGoogle Scholar
  137. 137.
    V. I. Kukulin, V. G. Neudatchin, and Yu. F. Smirnov, “Composite Particle Interaction Relevant to the Pauli Principle,” Fiz. Elem. Chastits At. Yadra 10, 1236–1255 (1979) [Sov. J. Part. Nucl. 10, 492 (1979)].Google Scholar
  138. 138.
    S. B. Dubovichenko and A. V. Dzhazairov-Kakhramanov, “Photoprocesses on 7Li and 7Be Nuclei in Cluster Model for Potentials with Forbidden States,” Yad. Fiz. 58, 635–641 (1995) [Phys. At. Nucl. 58, 579 (1995)]; “Photoprocesses on 6Li Nucleus in Cluster Models for Potentials with Forbidden States,” Yad. Fiz. 58, 852–859 (1995) [Phys. At. Nucl. 58, 788 (1995)].Google Scholar
  139. 139.
    S. B. Dubovichenko and A. V. Dzhazairov-Kakhramanov, “Potential Description of Cluster Channels of Lithium,” Yad. Fiz. 56, 87–98 (1993) [Phys. At. Nucl. 56, 195 (1993)]; “Coulomb Form Factors of Lithium Nuclei in Cluster Model on the Basis of Potentials with Forbidden States,” Yad. Fiz. 57, 784–791 (1994) [Phys. At. Nucl. 57, 733 (1994)].Google Scholar
  140. 140.
    A. C. Barnard, C. M. Jones, and G. C. Phillips, “The Scattering of 3He by 4He,” Nucl. Phys. 50, 629–640 (1964).Google Scholar
  141. 141.
    R. Spiger and T. A. Tombrello, “Scattering of He3 by He4 and of He4 by Tritium,” Phys. Rev. 163, 964–984 (1967).ADSGoogle Scholar
  142. 142.
    M. Ivanovich, P. G. Young, and G. G. Ohlsen, “Elastic Scattering of the Several Hydrogen and Helium Isotopes from Tritium,” Nucl. Phys. A 110, 441–462 (1968).ADSGoogle Scholar
  143. 143.
    L. C. McIntyre and W. Haeberli, “Phase Shifts Analysis of d-α Scattering,” Nucl. Phys. A 91, 382–398 (1967).ADSGoogle Scholar
  144. 144.
    L. G. Keller and W. Haeberli, “Vector Polarization Measurements and Phase Shift Analysis for d-α Scattering between 3 and 11 MeV,” Nucl. Phys. A 156, 465–476 (1979).ADSGoogle Scholar
  145. 145.
    W. Gruebler et al., “Phase Shift Analysis of d-α Elastic Scattering between 3 and 17 MeV,” Nucl. Phys. A 242, 265–284 (1975).ADSGoogle Scholar
  146. 146.
    P. A. Schmelzbach et al., “Phase Shift Analysis of d-α Elastic Scattering,” Nucl. Phys. A 184, 193–213 (1972).ADSGoogle Scholar
  147. 147.
    S. B. Dubovichenko, “Tensor 2H4He Interactions in the Potential Cluster Model Involving Forbidden States,” Yad. Fiz. 61, 210–217 (1998) [Phys. At. Nucl. 61, 162 (1998)].Google Scholar
  148. 148.
    S. B. Dubovichenko, “Astrophysical S-Factors of Radiative 3He4He, 3H4He and 2H4He Capture,” Yad. Fiz., 73, (2010) [Phys. At. Nucl. 73, 1526 (2010)].Google Scholar
  149. 149.
    L. D. Blokhintsev et al., “Determination of the 6α + d Vertex Constant (Asymptotic Coefficient) from the 4He + d Phase-Shift Analysis,” Phys. Rev. C 48, 2390–2394 (1993).ADSGoogle Scholar
  150. 150.
    L. D. Blokhintsev et al., “Calculation of the Nuclear Vertex Constant (Asymptotic Normalization Coefficient) for the Virtual Decay 6Li → α + d on the Basis of the Three Body Model and Application of the Result in Describing the Astrophysical Nuclear Reaction d(α, γ)6Li at Ultralow Energies,” Yad. Fiz. 69, 456–466 (2006) [Phys. At. Nucl. 69, 433 (2006)].Google Scholar
  151. 151.
    T. K. Lim, “The 6Li-α-d Vertex Constant,” Phys. Lett. B 56, 321–324 (1975).ADSGoogle Scholar
  152. 152.
    S. B. Igamov and R. Yarmukhamedov, “Modified Two-Body Potential Approach to the Peripheral Direct Capture Astrophysical α + AB + γ Reaction and Asymptotic Normalization Coefficients,” Nucl. Phys. A 781, 247–276 (2007).ADSGoogle Scholar
  153. 153.
    C. R. Brune et al., “Sub-Coulomb α Transfers on 12C and the 12C(α, γ)16O S Factor,” Phys. Rev. Lett. 83, 4025–4028 (1999).ADSGoogle Scholar
  154. 154.
    S. B. Igamov, K. I. Tursunmakhatov, and R. Yarmukhamedov, “Determination of the 3He + α to 7Be Asymptotic Normalization Coefficients (Nuclear Vertex Constants) and their Application for Extrapolation of the 3He(α, γ)7Be Astrophysical S-Factors to the Solar Energy Region,” arXiv:0905.2026v3 [nucl-th] (2009).Google Scholar
  155. 155.
    K. Langanke, “Microscopic Potential Model Studies of Light Nuclear Capture Reactions,” Nucl. Phys. A 457, 351–366 (1986).ADSGoogle Scholar
  156. 156.
    T. Kajino, “The 3He(α, γ)7Be and 3He(α, γ)7Li Reactions at Astrophysical Energies,” Nucl. Phys. A 460, 559–580 (1986).ADSGoogle Scholar
  157. 157.
    N. A. Burkova et al., “Is It Possible to Observe an Isoscalar E1-Multipole in 6Liγαd Reactions?,” Phys. Lett. B 248, 15–20 (1990).ADSGoogle Scholar
  158. 158.
    C. R. Brune, R. W. Kavanagh, and C. Rolf, “3H(α, γ)7Li Reaction at Low Energies,” Phys. Rev. C 50, 2205–2218 (1994).ADSGoogle Scholar
  159. 159.
    G. M. Griffiths et al., “The 3H(4He, γ)7Li Reactions,” Can. J. Phys. 39, 1397–1403 (1961).ADSGoogle Scholar
  160. 160.
    U. Schroder et al., “Astrophysical S Factor of 3H(α, γ)7Li,” Phys. Lett. B 192, 55–58 (1987).ADSGoogle Scholar
  161. 161.
    T. A. D. Brown et al., “3He + 4He → 7Be Astrophysical S Factor,” Phys. Rev. C 76, 055801.1–055801. 12 (2007).ADSGoogle Scholar
  162. 162.
    F. Confortola et al., “Astrophysical S Factor of the 3He(α, γ)7Be Reaction Measured at Low Energy via Detection of Prompt and Delayed γ Rays,” Phys. Rev. C 75, 065803 (2007); arXiv:0705.2151v1 [nucl-ex] (2007).ADSGoogle Scholar
  163. 163.
    G. Gyurky et al., “3He(α, γ)7Be Cross Section at Low Energies,” Phys. Rev. C 75, 035805 (2007).ADSGoogle Scholar
  164. 164.
    N. Singh et al., “New Precision Measurement of the 3He(4He, γ)7Be Cross Section,” Phys. Rev. Lett. 93, 262503 (2004).ADSGoogle Scholar
  165. 165.
    J. L. Osborn et al., “Low-Energy Behavior of the 3He(α, γ)7Be Cross Section,” Nucl. Phys. A 419, 115–132 (1984).ADSGoogle Scholar
  166. 166.
    D. Bemmerer et al., “Activation Measurement of the 3He(α,γ)7Be Cross Section at Low Energy,” Phys. Rev. Lett. 97, 122502–122507 (2006); arXiv:nucl-ex/0609013v1 (2006).ADSGoogle Scholar
  167. 167.
    H. Costantini, “The 3He(α, γ)7Be S-Factor at Solar Energies: The Prompt Experiment at LUNA,” arXiv:0809.5269v1 [nucl-ex] (2008).Google Scholar
  168. 168.
    R. C. Robertson et al., “Observation of the Capture Reaction 2H(α, γ)6Li and Its Role in Production of 6Li in the Big Bang,” Phys. Rev. Lett. 47, 1867–1870 (1981).ADSGoogle Scholar
  169. 169.
    P. Mohr et al., “Direct Capture in the 3+ Resonance of 2H(α, γ)6Li,” Phys. Rev. C 50, 1543–1549 (1994).ADSGoogle Scholar
  170. 170.
    J. Kiener et al., “Measurements of the Coulomb Dissociation Cross Section of 156 MeV 6Li Projectiles at Extremely Low Relative Fragment Energies of Astrophysical Interest,” Phys. Rev. C 44, 2195–2208 (1991).ADSGoogle Scholar
  171. 171.
    S. B. Igamov and R. Yarmukhamedov, “Triple-Differential Cross Section of the 208Pb(6Li, αd)208Pb Coulomb Breakup and Astrophysical S-Factor of the d(α, γ)6Li Reaction at Extremely Low Energies,” Nucl. Phys. A 673, 509–525 (2000).ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Fesenkov Astrophysical Institute NCSRT NSA RKAlmatyKazakhstan
  2. 2.Institute of Nuclear Physics NNC RKAlmatyKazakhstan
  3. 3.Joint Institute for Nuclear ResearchDubna, Moscow oblastRussia

Personalised recommendations