Physics of Particles and Nuclei

, Volume 41, Issue 7, pp 1014–1016 | Cite as

The cauchy problem for BBGKY hierarchy of quantum kinetic equations with coulomb potential

  • M. Brokate
  • M. Yu. Rasulova
Session “Statistical Mechanics, Kinetics and Quantum Theory of Condensed Matter”


The existence of a unique solution, in terms of initial data of the BBGKY hierarchy of quantum kinetic equations with coulomb potential, is proved. This is based on non-relativistic quantum mechanics and utilizing a semigroup method.


Cauchy Problem Poisson Bracket Coulomb Potential Uzbekistan Springer Lecture Note 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. N. Bogolyubov, Problems of a Dynamical Theory in Statistical Physics (Gostehizdat, Moscow, 1946); N.N. Bogolyubov, Lectures on Quantum Statistics (Radyanska Shkola, Kiev, 1949).Google Scholar
  2. 2.
    N. N. Bogolyubov and N. N. Bogolyubov, Jr., Introduction to Quantum Statistical Mechanics (Nauka, Moscow, 1984).zbMATHGoogle Scholar
  3. 3.
    E. H. Lieb and J. L. Lebowitz, Springer Lecture Notes Phys. 20, 136 (1973).CrossRefADSGoogle Scholar
  4. 4.
    T. Kato, Perturbation Theory for Linear Operators (Springer, Berlin, Heidelberg, New York, 1966).zbMATHGoogle Scholar
  5. 5.
    D. Ya. Petrina and A. K. Vidibida, Trudi MI ANUSSR 136, 370 (1975).MathSciNetGoogle Scholar
  6. 6.
    D. Ya. Petrina, Mathematical Foundation of Quantum Statistical Mechanics, Continuous Systems (Kluwer Acad., Dordrecht, Boston, London, 1995).Google Scholar
  7. 7.
    M. Yu. Rasulova, Dokl. Akad. Nauk UzSSR 2, 248 (1976).MathSciNetGoogle Scholar
  8. 8.
    I. Gohberg, S. Goldberg, and M. A. Kaashoek, Classes of Linear Operators, Vol. 1 (Birkhäuser, Basel, Boston, Berlin, 1990).zbMATHGoogle Scholar
  9. 9.
    A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations (Springer, New York, Berlin, Heidelberg, London, Paris, Tokyo, Hong Kong, Barcelona, Budapest, 1983).zbMATHGoogle Scholar
  10. 10.
    M. Reed and B. Saymon, Methods of Modern Mathematical Physics, Vol. 2 (Academic, New York, San Francisco, London, 1975).zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • M. Brokate
    • 1
  • M. Yu. Rasulova
    • 1
    • 2
    • 3
  1. 1.Mathematics Centre TUMGarchingGermany
  2. 2.Institute of Nuclear PhysicsTashkentUzbekistan
  3. 3.MIMOS BHDKuala-LumpurMalaysia

Personalised recommendations