Skip to main content
Log in

Convergence and gauge dependence properties of the resummed one-loop quark-quark scattering amplitude in perturbative QCD

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The one-loop QCD effective charge α eff s for quark-quark scattering is derived by diagrammatic resummation of the one-loop amplitude using an arbitrary covariant gauge. Except for the particular choice of gauge parameter ξ = −3, α eff s is found to increase with increasing physical scale, Q, as lnQ or ln2 Q. For ξ = −3, α eff s decreases with increasing Q and satisfies a renormalization group equation. Also, except for the case ξ = 19/9, convergence radii of geometric series are found to impose upper limits on Q.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Coqueraux and E. De Rafael, Phys. Lett. B 69, 181 (1977).

    Article  ADS  MathSciNet  Google Scholar 

  2. R. K. Ellis et al., Nucl. Phys. B 173, 397 (1980).

    Article  ADS  Google Scholar 

  3. W. Slominski and W. Furmanski, Krakow preprint TPJU-11/81 (1981).

  4. R. K. Ellis and J. C. Sexton, Nucl. Phys. B 269, 445 (1986).

    Article  ADS  Google Scholar 

  5. C. P. Korthals Altes and E. De Rafael, Phys. Lett. B 62, 320 (1976); Nucl. Phys. B 125, 275 (1977).

    Article  ADS  Google Scholar 

  6. G. t’Hooft and M. Veltman, Nucl. Phys. B 44, 189 (1972).

    Article  ADS  MathSciNet  Google Scholar 

  7. E. C. G. Stückelberg and A. Peterman, Helv. Phys. Acta 26, 499 (1953).

    MATH  MathSciNet  Google Scholar 

  8. M. Gell-Mann and F. Low, Phys. Rev. 95, 1300 (1954).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. N. N. Bogoliubov and D. V. Shirkov, Nuovo Cimento 3, 845 (1956).

    Article  MathSciNet  Google Scholar 

  10. C. Callan, Jr., Phys. Rev. D 2, 1541 (1970).

    Article  ADS  Google Scholar 

  11. K. Symanzik, Comm. Math. Phys. 18, 227 (1970); Comm. Math. Phys. 23, 49 (1971).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. R. D. Field, Applications of Perturbative QCD (Addison-Wesley, Redwood City, California, 1989), Ch. 6.

    Google Scholar 

  13. M. Pennington, Rep. Prog. Phys. 46, 393 (1983).

    Article  ADS  Google Scholar 

  14. C. Itzykson and J.-B. Zuber, Quantum Field Theory (Mc-Graw Hill, New York, 1985).

    Google Scholar 

  15. J. H. Field, Ann. Phys. (N.Y.) 226, 209 (1993).

    Article  ADS  Google Scholar 

  16. J. H. Field, Int. J. Mod. Phys. A 9, 3283 (1994).

    Article  ADS  Google Scholar 

  17. T. D. Lee and M. Nauenberg, Phys. Rev. 133, 1549 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  18. T. Kinoshita, J. Math. Phys. 3, 650 (1962).

    Article  MATH  ADS  Google Scholar 

  19. J. H. Field, Mod. Phys. Lett. A 11, 2921 (1996).

    Article  ADS  Google Scholar 

  20. J. H. Field, Int. J. Mod. Phys. A 15, 3245 (2000).

    MATH  ADS  Google Scholar 

  21. J. H. Field, http://xxx.lanl.gov/abs/hep-ph/9811399v1,9811399v2.

  22. M. Böhm, A. Denner, and W. Hollik, Nucl. Phys. B 304, 687 (1988).

    Article  ADS  Google Scholar 

  23. N. J. Watson, Nucl. Phys. B 494, 388 (1997).

    Article  ADS  Google Scholar 

  24. G. H. Hardy, Pure Mathematics (Cambridge Univ., Cambridge, 1955), p. 149.

    Google Scholar 

  25. A. A. Abrikosov, I. M. Khalatinkov, and L. D. Landau, Dokl. Akad. Nauk. SSSR 95, 177 (1954) [L. D. Landau, in Collected Papers, Ed. by D. ter Haar (Pergamon, Oxford, 1965), Paper 80].

    Google Scholar 

  26. H. Georgi and S. L. Glashow, Phys. Rev. Lett. 32, 438 (1974).

    Article  ADS  Google Scholar 

  27. H. Georgi, H. R. Quinn, and S. Weinberg, Phys. Rev. Lett. 33, 451 (1974).

    Article  ADS  Google Scholar 

  28. D. Gross and F. Wilczek, Phys. Rev. Lett. 30, 1343 (1973).

    Article  ADS  Google Scholar 

  29. H. D. Politzer, Phys. Rev. Lett. 30, 1346 (1973).

    Article  ADS  Google Scholar 

  30. D. Espriu and R. Tarrach, Phys. Rev. D 25, 1073 (1982).

    Article  ADS  Google Scholar 

  31. P. A. Rącza and R. Rącza, Phys. Rev. D 39, 643 (1989).

    Article  Google Scholar 

  32. O. V. Tarasov and D. V. Shirkov, Sov. J. Nucl. Phys. 51, 877 (1990).

    Google Scholar 

  33. O. Nachtmann and W. Wetzel, Nucl. Phys. B 146, 273 (1979).

    Article  ADS  Google Scholar 

  34. H. Georgi and H. D. Politzer, Phys. Rev. D 14, 1829 (1976); H. D. Politzer, Nucl. Phys. B 146, 283 (1976).

    Article  ADS  Google Scholar 

  35. R. Coqueraux, Phys. Rev. D 23, 1365 (1981).

    Article  ADS  Google Scholar 

  36. B. Lautrup, Phys. Lett. Phys. Lett. B 69, 107 (1977); G. t’Hooft, in The Whys of Subnuclear Physics, Proc. of the 15th Intern. School of Subnuclear Physics, Erice, Sicily, 1977, Ed. by A. Zichichi (Plenum, New York, 1979); for References to more recent work see, for example, M. Beneke, Phys. Rep. 317, 1 (1999).

    ADS  MathSciNet  Google Scholar 

  37. D. J. Broadhurst and A. G. Grazin, Phys. Rev. D 52, 4082 (1995).

    Article  ADS  Google Scholar 

  38. S. V. Mikhailov, Phys. Lett. B 431, 387 (1998).

    Article  ADS  Google Scholar 

  39. M. Beneke and V. M. Braun, Renormalons and Power Corrections, in Physics Handbook of QCD, Ed. by M. Shifman (World Sci., Singapore, 2001).

    Google Scholar 

  40. V. M. Braun, E. Gardi, and S. Gottwald, Nucl. Phys. B 685, 171 (2004).

    Article  ADS  Google Scholar 

  41. K. G. Chetyrkin et al., Phys. Lett. B 384, 233 (1996).

    Article  ADS  Google Scholar 

  42. S. A. Larin, T. van Ritbergen, and J. A. M. Vermaseren, Nucl. Phys. B 427, 41 (1994).

    Article  ADS  Google Scholar 

  43. L. Mankiewicz, M. Maul, and E. Stein, Phys. Lett. B 404, 387 (1997).

    Google Scholar 

  44. S. Forte, “Progress in Perturbative QCD,” in Proc. of the 5th Intern. Workshop on Deep-Inelastic Scattering and QCD-DISC’97, Apr. 14–18, 1997, Chicago, IL, USA (Astron. Inst. Phys., New York, 1997); hep-ph/9706390.

    Google Scholar 

  45. J. M. Cornwall, Phys. Rev. D 26, 1453 (1982).

    Article  ADS  Google Scholar 

  46. J. M. Cornwall and J. Papavassiliou, Phys. Rev. D 40, 3474 (1989).

    Article  ADS  Google Scholar 

  47. A. Denner, G. Weiglein, and S. Dittmaier, Phys. Lett. B 333, 420 (1996).

    ADS  Google Scholar 

  48. B. W. Lee and J. Zinn-Justin, Phys. Rev. D 7, 1049 (1973); E. Abers and B. W. Lee, Phys. Rep. C 9, 127 (1973).

    Article  ADS  Google Scholar 

  49. G. t’Hooft and M. Veltman, Nucl. Phys. B 50, 318 (1972).

    Article  MathSciNet  Google Scholar 

  50. J. Papavassiliou and A. Pilaftsis, Phys. Rev. D 53, 2128 (1996).

    Article  ADS  Google Scholar 

  51. R. Jost and J. M. Luttinger, Helv. Phys. Acta. 23, 201 (1950).

    MATH  MathSciNet  Google Scholar 

  52. D. R. T. Jones, Nucl. Phys. B 75, 531 (1974).

    Article  ADS  Google Scholar 

  53. G. t’Hooft, Nucl. Phys. B 35, 167 (1971).

    Article  ADS  Google Scholar 

  54. G. Degrassi and A. Sirlin, Nucl. Phys. B 383, 73 (1992).

    Article  ADS  Google Scholar 

  55. L. Baulieu and R. Coqueraux, Ann. Phys. 140, 163 (1982).

    Article  ADS  Google Scholar 

  56. M. Kuroda, G. Moultaka, and D. Schildknecht, Nucl. Phys. B 350, 25 (1991).

    Article  ADS  Google Scholar 

  57. D. C. Kennedy et al., Nucl. Phys. 321, 83 (1989); D. C. Kennedy and B. W. Lynn, Nucl. Phys. 322, 1 (1989).

    Article  ADS  Google Scholar 

  58. G. Degrassi and A. Sirlin, Phys. Rev. D 46, 3104 (1992).

    Article  ADS  Google Scholar 

  59. J. Papavassiliou, E. de Rafael, and N. J. Watson, Nucl. Phys. B 503, 79 (1997).

    Article  ADS  Google Scholar 

  60. G. P. Lepage and S. J. Brodsky, Phys. Lett. B 87, 359 (1979).

    Article  ADS  Google Scholar 

  61. M. K. Chase, Nucl. Phys. B 189, 461 (1981).

    Article  ADS  Google Scholar 

  62. D. M. Photiadis, Phys. Lett. B 164, 160 (1985).

    Article  ADS  Google Scholar 

  63. M. Passera and A. Sirlin, Phys. Rev. Lett. 77, 4146 (1996).

    Article  ADS  Google Scholar 

  64. See, for example, Proceedings of the Workshop on QCD 20 Years Later, Aachen, 1992, Ed. by P. M. Zerwas and H. A. Kastrup (World Sci., Singapore, 1993).

    Google Scholar 

  65. The LEP Electroweak Working Group, “A Combination of Preliminary LEP Electroweak Measurements and Constraints on the Standard Model,” CERN-PPE/95-172.

  66. M. Virchaux and A. Milsztajn, Phys. Lett. B 274, 221 (1992).

    Article  ADS  Google Scholar 

  67. J. D. Jackson and L. B. Okun, Rev. Mod, Phys. 73, 663 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  68. D. V. Shirkov and I. L. Solovtsov, Theor. Math. Phys. 150, 132 (2007), and references therein.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The text was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Field, J.H. Convergence and gauge dependence properties of the resummed one-loop quark-quark scattering amplitude in perturbative QCD. Phys. Part. Nuclei 40, 353–367 (2009). https://doi.org/10.1134/S1063779609030046

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779609030046

Key words

PACS numbers

Navigation