Skip to main content
Log in

Prospects for isomeric energy release

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The state of experimental studies and promising proposals for the application of nuclear isomers presented as controlled energy or γ-ray sources are reviewed. The properties of isomeric states, methods of their production, and approaches to their efficient stimulation using various types of radiation are analyzed. The long-lived isomers, which can be accumulated in reactor irradiations or in other nuclear interactions with abundant yield, are listed. The isomers are estimated according to their specific energy accumulated per nucleus and the level of the cross section for their formation in reactions with neutrons. The nuclei are classified as promising either for obtaining controlled γ-ray pulses, for the enhanced release of the radioactive decay energy, or for experimental studies on detecting forbidden electromagnetic transitions from the ground to isomeric state. In all cases, the possibility of external-stimulus action on nuclear transitions has key significance, which should become the subject of investigations. The results of successful observation of stimulation of isomers are described at excitation energy E* > 1 MeV in the reactions with bremsstrahlung photons and Coulomb excitation in the ion beam. The essential increase in the K-hindered transitions with increasing energy and also the K-mixing at high rotational frequency for high-spin levels are discussed. The attention is focused on attempts to detect the triggering induced by the radiation in the x-ray range, in particular, that of the 178m2Hf isomer with the help of x-ray sources and the synchrotron radiation. Proposals for experiments with other isomers are considered. The possibility of affecting the nuclear states by means of ionization of electron shells of a corresponding atom is discussed as promising, and various schemes of similar experiments are proposed. The atomic cross sections are eight orders of magnitude higher than the nuclear ones; therefore, the stimulation of an isomer can occur even if the conversion from atomic excitations to nuclear ones has a low probability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. M. Walker and G. Dracoulis, Nature 399, 35 (1999).

    Article  ADS  Google Scholar 

  2. R. Coussement, R. Shakhmouratov, G. Neyens, and J. Odeurs, Euro Phys. News 34, 190 (2003).

    ADS  Google Scholar 

  3. S. A. Karamyan, in Proc. of Workshop on Physics of Isomers (VNIIEF, Sarov, 2001), p. 164.

    Google Scholar 

  4. P. M. Walker and J. J. Carroll, Phys. Today 39(6), (2005).

  5. J. J. Carroll, Laser Phys. Lett. 1(6), 275 (2004).

    Article  Google Scholar 

  6. M. B. Chadwick and P. G. Young, Nucl. Sci. Engin. 108, 117 (1991).

    Google Scholar 

  7. D. Belić, C. Arlandini, J. Besserer, et al., Phys. Rev. C 65, 035801 (2002).

  8. S. A. Karamian, C. B. Collins, J. J. Carroll, and J. Adam, Phys. Rev. C 57, 1812 (1998).

    Article  ADS  Google Scholar 

  9. S. A. Karamian, C. B. Collins, J. J. Carroll, et al., Phys. Rev. C 59, 755 (1999).

    Article  ADS  Google Scholar 

  10. P. M. Walker, D. M. Cullen, C. S. Purry, et al., Phys. Lett. B 408, 42 (1997).

    Article  ADS  Google Scholar 

  11. Table of Isotopes, Ed. by R. B. Firestone et al., 8th ed. (Wiley, 1996).

  12. S. F. Mughabghab et al., Neutron Cross Sections, Vol. 1, Parts A and B (Academic, 1981, 1984).

  13. O. Roig, G. Belier, J-M. Daugas, et al., Nucl. Instr. Methods A 521, 5 (2004).

    Article  ADS  Google Scholar 

  14. G. Belier, O. Roig, J.-M. Daugas, et al., Phys. Rev. C 73, 014603 (2006).

  15. O. Roig, G. Belier, V. Meot, et al., Phys. Rev. C 74, 054604 (2006).

  16. C. B. Collins, C. D. Eberhard, J. W. Glesener, and J. A. Andersen, Phys. Rev. C 37, 2267 (1988).

    Article  ADS  Google Scholar 

  17. C. D. Dracoulis, T. Kibedi, A. P. Byrne, et al., Phys. Rev. C 62, 037301 (2000).

  18. P. M. Walker, G. Dracoulis, and J. J. Carroll, Phys. Rev. C 64, 061302R (2001).

  19. M. Loewe, J. Besserer, J. De Boer, et al., Acta Phys. Pol. B 30, 1319 (1999).

    ADS  Google Scholar 

  20. M. Loewe, P. Alexa, T. Czosnika, et al., Phys. Lett. B 551, 71 (2003).

    Article  ADS  Google Scholar 

  21. S. A. Karamian, J. De Boer, Yu. Ts. Oganessian, et al., Z. Phys. A 356, 23 (1996).

    Article  ADS  Google Scholar 

  22. A. B. Hayes, D. Cline, C. Y. Wu, et al., Phys. Rev. Lett. 89, 242501 (2002).

    Article  ADS  Google Scholar 

  23. A. B. Hayes, D. Cline, C. Y. Wu, et al., Phys. Rev. Lett. 96, 042505 (2006).

    Article  ADS  Google Scholar 

  24. S. A. Karamian and J. J. Carroll, in Proc. of 7th AFOSR Workshop on Isomers and Quantum Nucleonics (JINR, Dubna, 2005), p. 85.

    Google Scholar 

  25. S. A. Karamian, J. J. Carroll, S. Iliev, and S. P. Tretyakova, Phys. Rev. C 75, 057301 (2007).

    Google Scholar 

  26. A. B. Hayes, D. Cline, K. J. Moody, et al., Laser Phys. 17, 745 (2007).

    Article  ADS  Google Scholar 

  27. S. A. Karamian and J. J. Carroll, Laser Phys. 17, 80 (2007).

    Article  ADS  Google Scholar 

  28. K. Alder, A. Bohr, T. Huus, et al., Rev. Mod. Phys. 28, 432 (1956).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. U. Van Bürck, R. L. Mössbauer, E. Gerdau, et al., Phys. Rev. Lett. 59, 355 (1987).

    Article  ADS  Google Scholar 

  30. O. Kocharovskaya, Hyperfine Interact. 107, 187 (1997).

    Article  ADS  Google Scholar 

  31. Y. Rostovtsev, R. Kolesov, and O. Kocharovskaya, Hyperfine Interact. 143, 121 (2002).

    Article  ADS  Google Scholar 

  32. H. R. Reiss, Phys. Rev. C 27, 1229 (1983).

    Article  ADS  Google Scholar 

  33. C. B. Collins, F. Davanloo, M. Iosif, et al., Phys. Rev. Lett. 82, 695 (1999).

    Article  ADS  Google Scholar 

  34. D. Hambling, New Scientist (Aug. 13, 2003); M. Becker, Der Spiegel (Aug. 14, 2003); B. Schwarzschild, Phys. Today 57 (5), 21 (2004); S. Leskov, Izvestiya, Nauka (Sept. 11, 2003).

  35. Sh. Weinberger, Imaginary Weapons (Nation Books, New York, 2006).

    Google Scholar 

  36. C. B. Collins, N. C. Zoita, F. Davanloo, et al., Las. Phys. Lett. 2, 162 (2005).

    Article  Google Scholar 

  37. E. V. Tkalya, Usp. Fiz. Nauk 175, 555 (2005) [Phys.-Usp. 48, 525 (2005)].

    Article  Google Scholar 

  38. I. Ahmad, J. C. Banar, J. A. Becker, et al., Phys. Rev. C 71, 024311 (2005).

  39. H. Roberts, M. Helba, J. J. Carroll, et al., Hyperfine Interact. 143, 111 (2003).

    Article  ADS  Google Scholar 

  40. J. J. Carroll, J. Barnett, T. Drummond, et al., Hyperfine Interact. 143, 37 (2003).

    Article  ADS  Google Scholar 

  41. P. Ugorowski, R. Propri, S. A. Karamian, et al., Nucl. Instr. Methods Phys. Res. A 565, 657 (2006).

    Article  ADS  Google Scholar 

  42. S. A. Karamian and J. J. Carroll, Laser Phys. 11, 23 (2001).

    Google Scholar 

  43. S. Olariu and A. Olariu, Phys. Rev. C 58, 333 (1998).

    Article  ADS  Google Scholar 

  44. M. Helba, H. Roberts, M. Litz, et al., in Proc. of 7th AFOSR Workshop on Isomers and Quantum Nucleonics (JINR, Dubna, 2005), p. 45.

    Google Scholar 

  45. S. A. Karamian, J. J. Carroll, J. Adam, et al., High Energy Density Phys. 2, 48 (2006).

    Article  Google Scholar 

  46. F. F. Karpeshin, Fiz. Elem. Chastits At. Yadra 37, 523 (2006) [Phys. Part. Nucl. 37, 284 (2006)].

    Google Scholar 

  47. S. Kishimoto, Y. Yodo, M. Seto, et al., Phys. Rev. Lett. 85, 1831 (2000).

    Article  ADS  Google Scholar 

  48. S. Kishimoto, Y. Yodo, Y. Kobayashi, et al., Phys. Rev. C 74, 031301R (2006).

  49. E. V. Tkalya, in Proc. of 56th Conf. on Nuclear Spectroscopy and Structure of Atomic Nuclei (Sarov, 2006), p. 29.

  50. I. N. Izosimov, Laser Phys. 17, 755 (2007).

    Article  ADS  Google Scholar 

  51. A. V. Andreev, R. V. Volkov, V. M. Gordienko, et al., Zh. Eksp. Teor. Fiz. 118, 1343 (2000) [JETP 91, 1163 (2000)].

    Google Scholar 

  52. A. A. Andreev, A. K. Van’kov, K. Yu. Platonov, et al., Zh. Eksp. Teor. Fiz. 121, 1004 (2002) [JETP 94, 862 (2002)].

    Google Scholar 

  53. M. R. Harston and J. F. Chemin, Phys. Rev. C 59, 2462 (1999).

    Article  ADS  Google Scholar 

  54. A. Cavalleri, C. W. Siders, F. L. H. Brown, et al., Phys. Rev. Lett. 85, 586 (2000).

    Article  ADS  Google Scholar 

  55. V. Schmidt, W. Husinsky, and G. Betz, Phys. Rev. Lett. 85, 3511 (2000).

    ADS  Google Scholar 

  56. S. A. Karamian and J. J. Carroll, Hyperfine Interact. 143, 69 (2002).

    Article  ADS  Google Scholar 

  57. S. A. Karamian, J. J. Carroll, L. A. Rivlin, et al., Laser Phys. 14, 166 (2004).

    Google Scholar 

  58. S. A. Karamian and J. J. Carroll, Laser Phys. 12, 310 (2002).

    Google Scholar 

  59. N. Boos, F. Le Blank, M. Krieg, et al., Phys. Rev. Lett. 72, 2689 (1994).

    Article  ADS  Google Scholar 

  60. S. A. Karamian, J. J. Carroll, J. Adam, and N. A. Demekhina, Nucl. Instr. Methods Phys. Res. A 530, 463 (2004).

    Article  ADS  Google Scholar 

  61. S. A. Karamian, J. J. Carroll, J. Adam, et al., Laser Phys. 14, 438 (2004).

    Google Scholar 

  62. S. A. Karamian, J. Adam, P. Chaloun, et al., Nucl. Instr. Methods Phys. Res. A 527, 609 (2004).

    Article  ADS  Google Scholar 

  63. S. A. Karamian and J. Adam, Czech. J. Phys. B 53, 381 (2003).

    Google Scholar 

  64. S. A. Karamian, J. Adam, D. V. Filossofov, et al., Nucl. Instr. Methods Phys. Res. A 489, 448 (2002).

    Article  ADS  Google Scholar 

  65. H. A. O’Brien, Nucl. Instr. Methods Phys. Res. B 40–41, 1126 (1989).

    Article  Google Scholar 

  66. Yu. Ts. Oganessian, S. A. Karamian, Yu. P. Gangrsky, et al., J. Phys. G 18, 393 (1992).

    Article  ADS  Google Scholar 

  67. Yu. Ts. Oganessian and S. A. Karamian, Hyperfine Interact. 107, 43 (1997).

    Article  ADS  Google Scholar 

  68. R. G. Helmer and C. W. Reich, Nucl. Phys. A 211, 1 (1973).

    Article  ADS  Google Scholar 

  69. S. A. Karamian, Yu. Ts. Oganessian, J. Adam, et al., in Proc. of Intern. School-Seminar on Heavy Ion Physics (World Sci., Singapore, 1998), p. 565.

    Google Scholar 

  70. Yu. Ts. Oganessian, S. A. Karamian, V. M. Nazarov, and Z. Szeglowski, JINR Rapid Commun. 54(3), 72 (1992).

    Google Scholar 

  71. I. A. Kondurov, Y. V. Petrov, E. M. Korotkin, et al., Phys. Lett. B 106, 383 (1981).

    Article  ADS  Google Scholar 

  72. S. A. Karamian, Yad. Fiz. 68, 1827 (2005) [Phys. At. Nucl. 68, 1765 (2005)].

    Google Scholar 

  73. S. A. Karamian and J. J. Carroll, in Proc. of 57-th Intern. Conf. on Nuclear Spectroscopy and Structure of Atomic Nuclei, Voronezh, 2007 (Nauka, St.-Petersburg, 2007).

    Google Scholar 

  74. O. V. Bochkarev, V. A. Vukolov, E. A. Koltypin, et al., Yad. Fiz. 59, 1749 (1996) [Phys. At. Nucl. 59, 1690 (1996)].

    Google Scholar 

  75. L. Lakosi, Z. Phys. A 356, 155 (1996).

    ADS  Google Scholar 

  76. L. Lakosi and T. C. Nguyen, Nucl. Phys. A 697, 44 (2002).

    Article  ADS  Google Scholar 

  77. N. Klay, F. Käppeler, H. Beer, and G. Schatz, Phys. Rev. C 44, 2839 (1991).

    Article  ADS  Google Scholar 

  78. J. J. Carroll, in Proc. of 12th Intern. Conf. on Capture Gamma-Ray Spectroscopy, Notre Dame, 2005, Ed. by A. Woehr and A. Aprahamian (AIP, 2006).

  79. F. R. Espinosa-Quinones, E. W. Cybulska, L. G. Emediato, et al., Phys. Rev. 52, 104 (1995).

    Article  ADS  Google Scholar 

  80. E. N. Shirshikov and N. V. Timofeeva, Nucl. Data Sheets 67, 45 (1992).

    Article  ADS  Google Scholar 

  81. P. Van Duppen, in Proc. of IOP Nucl. and Part. Phys. Intern. Conf., Guilford, 2007 (Univ. of Surrey, 2007), p. 3.

  82. I. Ahmad, R. W. Dunford, H. Esbensen, et al., Phys. Rev. C 61, 051304R (2000).

  83. K. Aoki, K. Hosono, K. Tanimoto, et al., Phys. Rev. C 64, 044609 (2001).

  84. G. Glaverie, M. M. Aleonard, J. M. Chemin, et al., Phys. Rev. C 70, 044303 (2004).

    Google Scholar 

  85. V. Meot, G. Gosselin, P. Morel, et al., in Proc. of 7th AFOSR Workshop on Isomers and Quantum Nucleonics, Dubna E15 18-2006-24 (Dubna, 2006), p. 153.

  86. F. Gobet, F. Hannachi, M. M. Aleonard, et al., in Proc. of 7th AFOSR Workshop on Isomers and Quantum Nucleonics, Dubna E15 18-2006-24 (Dubna, 2006), p. 162.

  87. T. Carreira, M. R. Harston, M. Aiche, et al., Phys. Rev. C 62, 024311 (2000).

  88. P. Thompson, in Proc. of IOP Nucl. and Part. Phys. Intern. Conf., Guilford, 2007 (Univ. of Surrey, 2007); Satellite Workshop on Isomers.

  89. C. B. Collins and J. J. Carroll, Hyperfine Interact. 107, 3 (1997).

    Article  ADS  Google Scholar 

  90. M. Sheck, D. Belic, P. von Brentano, et al., Phys. Rev. C 67, 064313 (2003).

  91. N. Pietralla, Z. Berant, V. N. Litvinenko, et al., Phys. Rev. Lett. 88, 012502 (2002).

    Google Scholar 

  92. F. Grüner, S. Becker, U. Schramm, et al., Appl. Phys. B 86, 431 (2007).

    Article  ADS  Google Scholar 

  93. Yu. P. Gangrskii, A. P. Tonchev, and N. P. Balabanov, Fiz. Elem. Chastits At. Yadra 27, 1043 (1996) [Phys. Part. Nucl. 27, 428 (1996)].

    Google Scholar 

  94. Yu. P. Gangrskii and V. M. Mazur, Fiz. Elem. Chastits At. Yadra 33, 158 (2002) [Phys. Part. Nucl. 33, 80 (2002)].

    Google Scholar 

  95. V. M. Mazur and L. M. Melnikova, Fiz. Elem. Chastits At. Yadra 37, 1744 (2006) [Phys. Part. Nucl. 37, 1744 (2006)].

    Google Scholar 

  96. J. J. Carroll and S. A. Karamian, et al., Hyperfine Interact. 135, 3 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.A. Karamian, 2008, published in Fizika Elementarnykh Chastits i Atomnogo Yadra, 2008, Vol. 39, No. 4.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karamian, S.A. Prospects for isomeric energy release. Phys. Part. Nuclei 39, 490–525 (2008). https://doi.org/10.1134/S1063779608040023

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779608040023

PACS numbers

Navigation