Skip to main content
Log in

Path integral approach for superintegrable potentials on spaces of nonconstant curvature: I. Darboux spaces D I and D II

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

In this paper, the Feynman path integral technique is applied for superintegrable potentials on two-dimensional spaces of nonconstant curvature: these spaces are Darboux spaces D I and D II. On D I, there are three, and on D II four such potentials. We are able to evaluate the path integral in most of the separating coordinate systems, leading to expressions for the Green functions, the discrete and continuous wave-functions, and the discrete energy-spectra. In some cases, however, the discrete spectrum cannot be stated explicitly, because it is either determined by a transcendental equation involving parabolic cylinder functions (Darboux space I), or by a higher order polynomial equation. The solutions on D I in particular show that superintegrable systems are not necessarily degenerate. We can also show how the limiting cases of flat space (constant curvature zero) and the two-dimensional hyperboloid (constant negative curvature) emerge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abramowitz and I. A. Stegun, Pocketbook of Mathematical Functions (Harry Deutsch, Frankfurt/Main, 1984).

    MATH  Google Scholar 

  2. M. Böhm and G. Junker, “Path Integration Over Compact and Noncompact Rotation Groups,” J. Math. Phys. 28, 1978–1994 (1987).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. C. P. Boyer, E. G. Kalnins, and P. Winternitz, “Completely Integrable Relativistic Hamiltonian Systems and Separation of Variables in Hermitian Hyperbolic Spaces,” J. Math. Phys. 24, 2022–2034 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  4. C. Daskaloyannis and K. Ypsilantis, “Unified Treatment and Classification of Superintegrable Systems with Integrals Quadratic in Momenta on a Two Dimensional Manifold,” J. Math. Phys. 45(6), 042904 (2006).

    Google Scholar 

  5. I. H. Duru, “Path Integrals over SU(2) Manifold and Related Potentials,” Phys. Rev. D 30, 2121–2127 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  6. N. W. Evans, “Superintegrability in Classical Mechanics,” Phys. Rev. A 41, 5666 (1990); “Group Theory of the Smorodinsky-Winternitz System,” J. Math. Phys. 32, 3369 (1991); “Super-Integrability of the Winternitz System,” Phys. Lett. A 147, 483 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  7. R. P. Feynman and A. Hibbs, Quantum Mechanics and Path Integrals (McGraw Hill, New York, 1965).

    MATH  Google Scholar 

  8. W. Fischer, H. Leschke, and P. Müller, “Path Integration in Quantum Physics by Changing the Drift of the Underlying Diffusion Process: Application of Legendre Processes,” Ann. Phys. (N.Y.) 227, 206–221 (1993).

    Article  ADS  Google Scholar 

  9. J. Friš, V. Mandrosov, Ya. A. Smorodinsky, et al., “On Higher Symmetries in Quantum Mechanics,” Phys. Lett. 16, 354 (1965); J. Friš, Ya. A. Smorodinsky, M. Uhlir, et al., “Symmetry Groups in Classical and Quantum Mechanics,” Sov. J. Nucl. Phys. 4, 444 (1967).

    Article  ADS  MathSciNet  Google Scholar 

  10. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Academic Press, New York, 1980).

    MATH  Google Scholar 

  11. C. Grosche, “The Path Integral on the Poincaré Upper Half-Plane with a Magnetic Field and for the Morse Potential,” Ann. Phys. (N.Y.) 187, 110–134 (1988).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. C. Grosche, “Path Integration via Summation of Perturbation Expansions and Application to Totally Reflecting Boundaries and Potential Steps,” Phys. Rev. Lett. 71, 1–4 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  13. C. Grosche, Path Integrals, Hyperbolic Spaces, and Selberg Trace Formula (World Scientific, Singapore, 1996).

    Google Scholar 

  14. C. Grosche, “Path Integration on Hermitian Hyperbolic Space,” J. Phys. A: Math. Gen. 38, 3625–3650 (2005).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. C. Grosche, “Path Integration on Darboux Spaces,” Phys. Part. Nucl. 37, 368–389 (2006).

    Article  Google Scholar 

  16. C. Grosche, “Path Integral Approach for Spaces of Non-Constant Curvature in Three Dimensions,” DESY Report, DESY 05-221, November 2005, quantph/0511135 in Proc. of the II International Workshop on Superintegrable Systems in Classical and Quantum Mechanics, Dubna, Russia, June 27–July 1, 2005; Phys. Atom. Nucl. 69 (2006).

  17. C. Grosche, Kh. Karayan, G. S. Pogosyan, and A. N. Sissakian, “Quantum Motion on the Three-Dimensional Sphere: The Ellipso-Cylindrical Bases,” J. Phys. A: Math. Gen. 30, 1629–1657 (1997).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. C. Grosche, G. S. Pogosyan, and A. N. Sissakian, “Path Integral Discussion for Smorodinsky-Winternitz Potentials: I. Two-and Three-Dimensional Euclidean Space,” Fortschr. Phys. 43, 453–521 (1995).

    MATH  MathSciNet  Google Scholar 

  19. C. Grosche, G. S. Pogosyan, and A. N. Sissakian, “Path Integral Discussion for Smorodinsky-Winternitz Potentials: II. The Two-and Three-Dimensional Sphere,” Fortschr. Phys. 43, 523–563 (1995).

    MATH  MathSciNet  Google Scholar 

  20. C. Grosche, G. S. Pogosyan, and A. N. Sissakian, “Path-Integral Approach to Superintegrable Potentials on the Two-Dimensional Hyperboloid,” Phys. Part. Nucl. 27, 244–278 (1996).

    Google Scholar 

  21. C. Grosche, G. S. Pogosyan, and A. N. Sissakian, “Path Integral Approach for Superintegrable Potentials on the Three-Dimensional Hyperboloid,” Phys. Part. Nucl. 28, 486–519 (1997).

    Article  Google Scholar 

  22. C. Grosche and F. Steiner, Handbook of Feynman Path Integrals. Springer Tracts in Modern Physics (Springer, Berlin, Heidelberg, 1998), Vol. 145.

    Google Scholar 

  23. A. A. Izmestjev, G. S. Pogosyan, A. N. Sissakian, and P. Winternitz, “Contractions of Lie Algebras and Separation of Variables. The n-Dimensional Sphere,” J. Math. Phys. 4, 1549–1573 (1999); A. A. Izmestiev, G. S. Pogosyan, A. N. Winternitz, et al., “Contractions of Lie Algebras and Separation of Variables. Interbases Expansions,” J. Phys. A: Math. Gen. 34, 521–554 (2001).

    Article  ADS  Google Scholar 

  24. E. G. Kalnins, Separation of Variables for Riemannian Spaces of Constant Curvature (Longman Scientific & Technical, Essex, 1986).

    MATH  Google Scholar 

  25. E. G. Kalnins, J. M. Kress, W. Miller, Jr., and G. S. Pogosyan, “Completeness of Superintegrability in Two-Dimensional Constant-Curvature Spaces,” J. Phys. A: Math. Gen. 34, 4705–4720 (2001).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. E. G. Kalnins, J. R. Krees, and W. Miller, Jr., “Second Order Superintegrable Systems in Conformally Flat Spaces. V. 2D and 2D Quantum Systems” (June 2006).

  27. E. G. Kalnins, J. M. Kress, W. Miller, Jr., and P. Winternitz, “Superintegrable Systems in Darboux Spaces,” J. Math. Phys. 44, 5811–5848 (2003).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. E. G. Kalnins, J. M. Kress, and P. Winternitz, “Superintegrability in a Two-Dimensional Space of Non-constant Curvature,” J. Math. Phys. 43, 970–983 (2002).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. E. G. Kalnins, W. Miller, Jr., Ye. M. Hakobyan, and G. S. Pogosyan, “Superintegrability on the Two-Dimensional Hyperboloid II,” J. Math. Phys. 4, 2291–2306 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  30. E. G. Kalnins, W. Miller, Jr., and G. S. Pogosyan, “Superintegrability and Associated Polynomial Solutions: Euclidean Space and the Sphere in Two Dimensions,” J. Math. Phys. 37, 6439–6467 (1996).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  31. E. G. Kalnins, W. Miller, Jr., and G. S. Pogosyan, “Superintegrability on the Two-Dimensional Hyperboloid,” J. Math. Phys. 38, 5416–5433 (1997).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. E. G. Kalnins, W. Miller, Jr., and G. S. Pogosyan, “Contractions of Lie Algebras: Applications to Special Functions and Separation of Variables,” J. Phys. A: Math. Gen. 32, 4709–4732 (1999).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  33. E. G. Kalnins, W. Miller, Jr., and G. S. Pogosyan, “Completeness of Multiseparable Superintegrability on the Complex 2-Sphere,” J. Phys. A: Math. Gen. 33, 6791–6806 (2000).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  34. E. G. Kalnins, W. Miller, Jr., and G. S. Pogosyan, “Completeness of Multiseparable Superintegrability in E 2,C ,” J. Phys. A: Math. Gen. 33, 4105–4120 (2000).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  35. E. G. Kalnins, W. Miller, Jr., and G. S. Pogosyan, “Exact and Quasiexact Solvability of Second-Order Superintegrable Quantum Systems. I. Euclidean Space Preliminaries,” J. Math. Phys. 47, 033502 (2006).

    Google Scholar 

  36. E. G. Kalnins, G. C. Williams, W. Miller, Jr., and G. S. Pogosyan, “Superintegrability in Three-Dimensional Euclidean Space,” J. Math. Phys. 4, 708–725 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  37. T. T. Khachidze and A. A. Khelashvili, “Manifestations of the Hidden Symmetry of the Coulomb Problem in Relativistic Quantum Mechanics. From Pauli to Dirac Electron,” quant-ph/0507257.

  38. H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, and Polymer Physics (World Scientific, Singapore, 1990).

    MATH  Google Scholar 

  39. H. Kleinert and I. Mustapic, “Summing the Spectral Representations of Pöschl-Teller and Rosen-Morse Fixed-Energy Amplitudes,” J. Math. Phys. 33, 643–662 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  40. G. Koenigs, “On Geodesics of Quadratic Integrals,” in Lecons sur la théorie générale des surface, Ed. by G. Darboux 4, 368–404 (Chelsea Publ., 1972).

  41. P. Létourneau and L. Vinet, “Superintegrable Systems: Polynomial Algebras and Quasi-Exactly Solvable Hamiltonians,” Ann. Phys. (N.Y.) 243, 144–168 (1995).

    Article  MATH  ADS  Google Scholar 

  42. L. G. Mardoyan, G. S. Pogosyan, A. N. Sissakyan, and V. M. Ter-Antonyan, Quantum Systems with Hidden Symmetry. Interbasis Expansions (Fizmatlit, Moscow, 2006) [in Russian].

    Google Scholar 

  43. J. Meixner and F. W. Schäfke, Mathieusche Funktionen und Spharoidfunktionens (Springer, Berlin, 1954).

    Google Scholar 

  44. W. Miller, Jr., Symmetry and Separation of Variables (Addison-Wesley, Providence, Rhode Island, 1977).

    MATH  Google Scholar 

  45. F. Moon and D. Spencer, Field Theory Handbook (Springer, Berlin, 1961).

    MATH  Google Scholar 

  46. P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953).

    MATH  Google Scholar 

  47. M. N. Olevskij, “Tri-orthogonal Systems in Spaces of Constant Curvature in which the Equation Δ2 u + λu = 0 Allows the Complete Separation of Variables,” Math. Sb. 27, 379–426 (1950).

    Google Scholar 

  48. J. Patera, G. Pogosyan, and P. Winternitz, “Graded Contractions of the Lie Algebra e(2,1),” J. Phys. A: Math. Gen. 32, 805–826 (1999).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  49. L. S. Schulman, Techniques and Applications of Path Integration (John Wiley & Sons, New York, 1981).

    MATH  Google Scholar 

  50. A. V. Turbiner, “Quasi-Exactly-Solvable Problems and gsl(2) Algebra,” Commun. Math. Phys. 118, 467–474 (1988).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  51. A. Ushveridze, Quasi-exactly Solvable Models in Quantum Mechanics (Institute of Physics Publishing, Bristol, 1994).

    MATH  Google Scholar 

  52. P. Winternitz, Ya. A. Smorodinski, M. Uhlir, and I. Fris, “Symmetry Groups in Classical and Quantum Mechanics,” Sov. J. Nucl. Phys. 4, 444–450 (1967).

    Google Scholar 

  53. S. Wojciechowski, “Superintegrability of the Calogero-Moser System,” Phys. Lett. A 95, 279–281 (1983).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grosche, C., Pogosyan, G.S. & Sissakian, A.N. Path integral approach for superintegrable potentials on spaces of nonconstant curvature: I. Darboux spaces D I and D II . Phys. Part. Nuclei 38, 299–325 (2007). https://doi.org/10.1134/S1063779607030021

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779607030021

PACS numbers

Navigation