Skip to main content
Log in

Tetrad formalism and reference frames in general relativity

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

This review is devoted to problems of defining the reference frames in the tetrad formalism of General Relativity. Tetrads are the expansion coefficients of components of an orthogonal basis over the differentials of a coordinate space. The Hamiltonian cosmological perturbation theory is presented in terms of these invariant differential forms. This theory does not contain the double counting of the spatial metric determinant in contrast to the conventional Lifshits-Bardeen perturbation theory. We explicitly write out the Lorentz transformations of the orthogonal-basis components from the cosmic microwave background (CMB) reference frame to the laboratory frame, moving with a constant velocity relative to the CMB frame. Possible observational consequences of the Hamiltonian cosmological perturbation theory are discussed, in particular, the quantum anomaly of geometric interval and the shift of the origin, as a source of the CMB anisotropy, in the course of the universe evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Einstein, Sitzungsber. K. Preuss. Akad. Wiss. B 44(2), 778 (1915); 48 (2), 844 (1915); Collection of Scientific Works, Ed. by I. E. Tamm, Ya. A. Smorodinskii, and B. G. Kuznetsov (Nauka, Moscow, 1965), Vol. 1, Article 34, p. 423; Article 37, p. 448 [in Russian].

    Google Scholar 

  2. A. Einstein, Vossissche Zeitung 26, 33 (1914); Collection of Scientific Works, Ed. by I. E. Tamm, Ya. A. Smorodinskii, and B. G. Kuznetsov (Nauka, Moscow, 1965), Vol. 1, Article 31, p. 397; pp. 282, 284, 295, 425, 456, 560 [in Russian].

    Google Scholar 

  3. H. Weyl, Sitzungsber. Berl. Akad., 465 (1918).

  4. H. Weyl, Z. Phys. 56, 330 (1929).

    ADS  MATH  Google Scholar 

  5. V. Fock, Z. Phys. 39, 226 (1926).

    MATH  Google Scholar 

  6. V. A. Fock, Theory of Space, Time, and Gravitation (Gostekhizdat, Moscow, 1955; Pergamon, Oxford, 1964).

    Google Scholar 

  7. C. N. Yang and R. L. Mills, Phys. Rev. 96, 191 (1954).

    Article  ADS  MathSciNet  Google Scholar 

  8. I. Yang, Usp. Fiz. Nauk 132(1), 169 (1980).

    Google Scholar 

  9. R. Utiyama, Phys. Rev. 101, 1597 (1956).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. T. W. B. Kibble, J. Math. Phys. 2, 212 (1961).

    Article  MATH  MathSciNet  Google Scholar 

  11. P. Dirac, Proc. R. Soc. London, Ser. A 114, 243 (1927); Can. J. Phys. 33, 650 (1955).

    ADS  MATH  Google Scholar 

  12. I. V. Polubarinov, Phys. Part. Nucl. 34, 377 (2003).

    Google Scholar 

  13. V. N. Pervushin, Phys. Part. Nucl. 34, 348 (2003); hep-th/0109218; L. D. Lantsman and V. N. Pervushin, Yad. Fiz. 66, 1418 (2003) [Phys. At. Nucl. 66, 1384 (2003)].

    Google Scholar 

  14. V. V. Nesterenko, “On Interpretation of Noetherian Identities,” Preprint No. R2-86-284, OIYaI (Joint Institute for Nuclear Research, Dubna, 1986).

    Google Scholar 

  15. D. Hilbert, Nachr. Ges. Wiss. Goettingen, Math.-Phys., No. 3, 395–407 (1915); Variational Principles of Mechanics, Ed. by L. S. Polak (Fiz.-Mat. Literatura, Moscow, 1959), p. 589 [in Russian].

  16. D. Hilbert, Math. Ann. 92, 1 (1924).

    Article  MathSciNet  Google Scholar 

  17. E. Noether, Nachr. Ges. Wiss. Goettingen, Math.-Phys., No. 2, 235 (1918); Variational Principles of Mechanics, Ed. by L. S. Polak (Fiz.-Mat. Literatura, Moscow, 1959), p. 611 [in Russian].

  18. N. N. Bogoliubov, A. A. Logunov, and I. T. Todorov, Introduction to Axiomatic Quantum Field Theory (Nauka, Moscow, 1969; Benjamin, New York, 1975).

    Google Scholar 

  19. N. N. Bogoliubov and D. V. Shirkov, Introduction to the Theory of Quantized Fields (Nauka, Moscow, 1973; Wiley, New York, 1980).

    Google Scholar 

  20. L. D. Faddeev and V. N. Popov, Usp. Fiz. Nauk 111, 427 (1973) [Sov. Phys. Usp. 16, 777 (1973)].

    Google Scholar 

  21. V. A. Fock, Z. Phys. 57, 261 (1929).

    ADS  MATH  Google Scholar 

  22. Yu. S. Vladimirov, Frames in Gravitation Theory (Energoizdat, Moscow, 1982) [in Russian].

    Google Scholar 

  23. P. A. M. Dirac, Proc. R. Soc. London A 246, 333 (1958); Phys. Rev. 114, 924 (1959).

    ADS  MATH  MathSciNet  Google Scholar 

  24. R. Arnowitt, S. Deser, and C. W. Misner, Phys. Rev. 116, 1322 (1959); 117, 1595 (1960); 122, 997 (1961).

    Article  ADS  MathSciNet  Google Scholar 

  25. A. L. Zel’manov, Dokl. Akad. Nauk SSSR 227, 78 (1976) [Sov. Phys. Dokl. 227, 78 (1976)].

    MathSciNet  Google Scholar 

  26. P. A. M. Dirac, Lectures on Quantum Mechanics (Yeshiva University, New York, 1964; Mir, Moscow, 1968).

    Google Scholar 

  27. M. Pawlowski and V. N. Pervushin, Int. J. Mod. Phys. A 16, 1715 (2001); hep-th/0006116.

    ADS  MathSciNet  Google Scholar 

  28. B. M. Barbashov, V. N. Pervushin, and D. V. Proskurin, Teor. Mat. Fiz. 132, 181 (2002).

    MathSciNet  Google Scholar 

  29. D. E. Burlankov, Usp. Fiz. Nauk 174(8), 899 (2004) [Phys. Usp. 47 (8), 833 (2004)].

    Google Scholar 

  30. H. Poincaré, Bull. Sci. Math., Ser. 2 (Paris) 28, 302 (1904).

    MATH  Google Scholar 

  31. A. Einstein, Collection of Scientific Works, Ed. by I. E. Tamm, Ya. A. Smorodinskii, and B. K. Kuznetsov (Nauka, Mocsow, 1965), Vol. 1, Article 15, p. 175 [in Russian].

    Google Scholar 

  32. A. A. Logunov, Lectures in Relativity and Gravitation Theory (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  33. H. Poincaré, C. R. Acad. Sci. (Paris) 140, 1504 (1905); Rendiconti del Cirocolo Matematico di Palermo 21, 129 (1906); H. Lorentz, H. Poincaré, and H. Minkowski, Principle of Relativity (ONTI, Moscow, 1935), pp. 51–129 [in Russian].

    ADS  MATH  Google Scholar 

  34. A. Einstein, Anal. Phys. 17, 891 (1905).

    MATH  Google Scholar 

  35. P. Jordan, Z. Phys. 93, 464 (1935).

    MATH  Google Scholar 

  36. V. N. Pervushin, Fiz. Elem. Chastits At Yadra 15, 1073 (1984) [Sov. J. Part. Nucl. 15, 481 (1984)]; Riv. Nuovo Cimento 8 (10), 1 (1985); N. Ilieva and V. N. Pervushin, Fiz. Elem. Chastits At. Yadra 22, 573 (1991) [Sov. J. Part. Nucl. 22, 275 (1991)].

    Google Scholar 

  37. J. V. Narlikar, Introduction to Cosmology (Jones and Bartlett, Boston, 1983).

    Google Scholar 

  38. D. Behnke, D. B. Blaschke, V. N. Pervushin, and D. V. Proskurin, Phys. Lett. B 530, 20 (2002); gr-qc/0102039]; in Proceeding of the XVIIIth IAP Colloquium “On the Nature of Dark Energy,” Paris, France, 2002; Report MPG-VT-UR 240/03; astro-ph/0302001.

    ADS  Google Scholar 

  39. J. A. Wheeler, Lectures in Mathematics and Physics (Benjamin, New York, 1968); B. C. DeWitt, Phys. Rev. 160, 1113 (1967).

    Google Scholar 

  40. C. Misner, Phys. Rev. 186, 1319 (1969).

    ADS  MATH  Google Scholar 

  41. M. P. Ryan, Jr. and L. C. Shapley, Homogeneous Relativistic Cosmologies (Princeton Univ. Press, Princeton, 1975); M. P. Ryan, Hamiltonian Cosmology (Springer Verlag, Berlin, 1972), Lect. Notes Phys., No. 13.

    Google Scholar 

  42. V. N. Pervushin and V. I. Smirichinski, J. Phys. A: Math. Gen. 32, 6191 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  43. N. N. Bogoliubov, J. Phys. 11, 23 (1947).

    Google Scholar 

  44. T. Levi-Civita, Prace Mat.-Fiz. 17, 1 (1906); S. Shanmugadhasan, J. Math. Phys. 14, 677 (1973); S. A. Gogilidze, A. M. Khvedelidze, and V. N. Pervushin, J. Math. Phys. 37, 1760 (1996); Phys. Rev. D 53, 2160 (1996); Phys. Part. Nucl. 30, 66 (1999).

    MATH  Google Scholar 

  45. L. N. Gyngazov, M. Pawlowski, V. N. Pervushin, and V. I. Smirichinski, Gen. Relativ. Gravit. 37, 128 (1998).

    MathSciNet  Google Scholar 

  46. M. Pavlovski, V. V. Papoyan, V. N. Pervushin, and V. I. Smirichinski, Phys. Lett. B 444, 293 (1998).

    ADS  MathSciNet  Google Scholar 

  47. B. M. Barbashov, V. N. Pervushin, V. A. Zinchuk, and A. G. Zorin, “Hamiltonian Cosmological Dynamics of General Relativity,” presented at The International Workshop Frontiers of Particle Astrophysics, Kiev, Ukraine, 2004; V.N. Pervushin, V. A. Zinchuk, and A. G. Zorin, “Conformal Relativity: Theory and Observations,” presented at The International Conference HADRON STRUCTURE, Smolenice, Slovakia, 2004, gr-gc/0411105.

  48. S. Gogilidze, N. Ilieva, and V. Pervushin, Int. J. Mod. Phys. A 14, 3531 (1999).

    ADS  Google Scholar 

  49. E. M. Lifshits, Usp. Fiz. Nauk 80, 411 (1963) [Sov. Phys. Usp. 6, 255 (1963)]; Adv. Phys. 12, 208 (1963).

    Google Scholar 

  50. J. M. Bardeen, Phys. Rev. D 22, 1882 (1980); H. Kodama and M. Sasaki, Prog. Theor. Phys. Suppl. 78, 1 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  51. V. F. Mukhanov, H. A. Feldman, and R. H. Brandenberger, Phys. Rep. 215, 206 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  52. A. G. Riess et al., Astron. J. 116, 1009 (1998); S. Perlmutter et al., Astrophys. J. 517, 565 (1999); A. G. Riess et al., Astrophys. J. 560, 49 (2001); astro-ph/0104455.

    Article  ADS  Google Scholar 

  53. S. Weinberg, The First Three Minutes: A Modern View of the Origin of the Universe (Basic Books, New York, 1977).

    Google Scholar 

  54. V. N. Pervushin, D. V. Proskurin, and A. A. Gusev, Gravit. Cosmol. 8, 181 (2002).

    Google Scholar 

  55. D. B. Blaschke, S. I. Vinitsky, A. A. Gusev, et al., Phys. At. Nucl. 67, 1050 (2004).

    Article  Google Scholar 

  56. A. A. Gusev, P. Flin, V. N. Pervushin, et al., Astrophys. 47, 242 (2004).

    ADS  Google Scholar 

  57. A. Einstein and E. Strauss, Rev. Mod. Phys. 17, 120 (1945).

    Article  ADS  Google Scholar 

  58. A. Gusev et al., in Problems of Gauge Theories, Ed. by B. M. Barbashov and V. V. Nesterenko, JINR D2-2004-66, (Joint Institute for Nuclear Research, Dubna, 2004), pp. 127–130.

    Google Scholar 

  59. A. D. Sakharov, Pis’ma Zh. Eksp. Teor. Fiz. 5, 24 (1967) [Sov. J. Part. Nucl. 5, 17 (1967)]; V. A. Kuzmin, V.A. Rubakov, and M. E. Shaposhnikov, Phys. Lett. B 155, 36 (1961); V. A. Rubakov and M. E. Shaposhnikov, Usp. Fiz. Nauk 166, 493 (1996) [Phys. Usp. 39, 461 (1996).

    Google Scholar 

  60. L. B. Okun’, Leptons and Quarks (Nauka, Moscow, 1981; North-Holland, Amsterdam, 1984).

    Google Scholar 

  61. A. B. Borisov and V. I. Ogievetsky, Teor. Mat. Fiz. 21, 329 (1974).

    Google Scholar 

  62. A. D. Linde, Physics of Elementary Particles and Inflation Cosmology (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  63. A. Lichnerowicz, J. Math. Pures Appl. 23, 37 (1944).

    MATH  MathSciNet  Google Scholar 

  64. Y. W. York, Jr., Phys. Rev. Lett. 26, 1656 (1971).

    Article  ADS  MathSciNet  Google Scholar 

  65. J. W. York, Jr., J. Math. Phys. 14, 456 (1973).

    Article  MATH  MathSciNet  Google Scholar 

  66. H. Weyl, Symmetry (Princeton Univ. Press, Princeton, 1952; Mir, Moscow, 1970).

    Google Scholar 

  67. R. Penrose, Relativity, Groups, and Topology, (Gordon and Breach, London, 1964); N. Chernikov and E. Tagirov, Ann. Inst. Henry Poincaré 9, 109 (1968).

    Google Scholar 

  68. M. Pawlowski and R. Raczka, Found. Phys. 24, 1305 (1994); M. Pawlowski and R. Raczka, hep-ph/9503269, hep-ph/9503270.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.F. Zakharov, V.A. Zinchuk, V.N. Pervushin, 2006, published in Fizika Elementarnykh Chastits i Atomnogo Yadra, 2006, Vol. 37, No. 1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zakharov, A.F., Zinchuk, V.A. & Pervushin, V.N. Tetrad formalism and reference frames in general relativity. Phys. Part. Nuclei 37, 104–134 (2006). https://doi.org/10.1134/S1063779606010035

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779606010035

Keywords

Navigation