Skip to main content
Log in

Calculation of Geomagnetically Trapped Proton Flux from the PAMELA Experimental Data

  • ELEMENTARY PARTICLES AND FIELDS/Experiment
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

A simple and robust method of reconstruction of the geomagnetically trapped proton fluxes detected with the PAMELA spectrometer is proposed. Instead of multiple calculations of the effective area for different pitch-angles and different orientations of the instrument relative to the geomagnetic field vector, a value of an effective geometrical factor (GF) is estimated using one simulation sample with additional information about the instrument’s orientation relative to the vector of the Earth magnetic field. In this procedure, the additivity of the geometrical factor for different parts of the instrument’s field of view (FOV) is used. The simulation data sample is obtained in a standard way using Monte Carlo calculations of the isotropic flux. The method was tested on the task of reconstruction of the angular distribution of the Galactic proton flux. The fluxes in the Earth’s Inner Radiation Belt (IRB) recovered with this method were compared with the measurements of the NOAA-17 experiment and showed a good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

REFERENCES

  1. R. S. Selesnick, M. D. Looper, and R. A. Mewaldt, Space Weather 5, 9503 (2007).

    Article  Google Scholar 

  2. S. F. Singer, Phys. Rev. Lett. 1, 171 (1958).

    Article  ADS  Google Scholar 

  3. M. K. Hudson, B. T. Kress, J. E. Mazur, K. L. Perry, and P. L. Slocum, J. Atmos. Sol. Terr. Phys. 66, 1389 (2004).

    Article  ADS  CAS  Google Scholar 

  4. J. E. Mazur, J. B. Blake, P. L. Slocum, M. K. Hudson, and G. M. Mason, Solar Eruptions and Energetic Particles, Vol. 165 of Geophysical Monograph, Ed. by N. Gopalswamy, R. Mewaldt, and J. Torsti (AGU, Washington, 2006).

  5. O. Adriani, G. C. Barbarino, G. A. Bazilevskaya, R. Bellotti, M. Boezio, E. A. Bogomolov, M. Bongi, V. Bonvicini, S. Bottai, A. Bruno, F. Cafagna, D. Campana, R. Carbone, P. Carlson, M. Casolino, G. Castellini, et al., Astrophys. J. 799, L4 (2015).

    Article  ADS  CAS  Google Scholar 

  6. A. Bruno, M. Martucci, F. S. Cafagna, R. Sparvoli, O. Adriani, G. C. Barbarino, G. A. Bazilevskaya, R. Bellotti, M. Boezio, E. A. Bogomolov, M. Bongi, V. Bonvicini, D. Campana, P. Carlson, M. Casolino, G. Castellini, et al., Astrophys. J. 917, L21 (2021).

    Article  ADS  CAS  Google Scholar 

  7. R. S. Selesnick, A. C. Cummings, J. R. Cummings, R. A. Mewaldt, and E. C. Stone, J. Geophys. Res. 100 (A6), 9503 (1995).

    Article  ADS  CAS  Google Scholar 

  8. V. V. Malakhov and A. G. Mayorov, Bull. Russ. Acad. Sci.: Phys. 85, 386 (2021).

    Article  CAS  Google Scholar 

  9. N. V. Kuznetsov and N. I. Nikolayeva, Cosmic. Res. 50, 13 (2012).

    Article  ADS  CAS  Google Scholar 

  10. http://poes.ngdc.noaa.gov.

  11. O. Adriani, G. C. Barbarino, G. A. Bazilevskaya, R. Bellotti, M. Boezio, E. A. Bogomolov, M. Bongi, V. Bonvicini, S. Bottai, A. Bruno, F. Cafagna, D. Campana, R. Carbone, P. Carlson, M. Casolino, G. Castellini, et al., Phys. Rev. 544, 323 (2014).

    CAS  Google Scholar 

  12. C. E. Mcllwain, Space Sci. Rev. 5, 585 (1966).

    Article  ADS  Google Scholar 

  13. J. D. Sullivan, Nucl. Instrum. Methods Phys. Res. 95, 5 (1971).

    Article  ADS  Google Scholar 

  14. A. Bruno, M. Martucci, F. S. Cafagna, R. Sparvoli, O. Adriani, G. C. Barbarino, G. A. Bazilevskaya, R. Bellotti, M. Boezio, E. A. Bogomolov, M. Bongi, V. Bonvicini, D. Campana, P. Carlson, M. Casolino, G. Castellini, et al., Astrophys. J. 919, L114 (2021).

    Article  Google Scholar 

  15. H. M. Fischer, V. W. Auschrat, and G. Wibberenz, J. Geophys. Res. 82, 537 (1977).

    Article  ADS  CAS  Google Scholar 

  16. M. Martucci, S. Bartocci, R. Battiston, W. J. Burger, D. Campana, L. Carfora, L. Conti, A. Contin, C. De Donato, C. De Santis, F. M. Follega, R. Iuppa, N. Marcelli, G. Masciantonio, M. Mergè, A. Oliva, et al., Phys. Rev. D 105, 062001 (2022).

  17. J. G. Rederer, Dynamic of Radiation Trapped by Geomagnetic Field (MIR, Moscow, 1971).

    Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 19-72-10161, https:// rscf.ru/en/project/19-72-10161/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Malakhov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malakhov, V.V., Leonov, A.A., Mayorov, A.G. et al. Calculation of Geomagnetically Trapped Proton Flux from the PAMELA Experimental Data. Phys. Atom. Nuclei 86, 1125–1132 (2023). https://doi.org/10.1134/S1063778824010356

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778824010356

Navigation