Skip to main content
Log in

Theory of the Deconfinement in QCD

  • ELEMENTARY PARTICLES AND FIELDS/Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The phenomenon of the deconfinement—the spectacular drop of the colorelectric string tension at the critical temperature \(T_{c}\)—is studied within the method of field correlators (FCM) taking into account directly the contribution of the gluon condensate into the hadronic free energy. Using the resulting expressions for the free energy as a sum of the gluon condensate (the vacuum energy) and the hadronic pressure one obtains the possibility to calculate the deconfinement temperature \(T_{c}\) and the temperature behavior of the string tension \(\sigma_{E}(T)\) and the gluonic condensate \(G_{2}(T)\) below \(T_{c}\). The connection between the string tension and the quark condensate found in the framework of FCM allows to predict also the latter as a function of \(T\). These results are compared to the known lattice data of \(T_{c}\), \(\sigma_{E}(T)\), \(\langle\bar{q}q\rangle(T)\) for hadronic media with different \(n_{f}\) and \(m_{q}\) and in the external magnetic field \(eB\). The good agreement of the results of this approach with lattice data is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

REFERENCES

  1. H. G. Dosch, Phys. Lett. B 190, 177 (1987);

    Article  ADS  CAS  Google Scholar 

  2. H. G. Dosch and Yu. A. Simonov, Phys. Lett. B 205, 339 (1988);

    Article  ADS  MathSciNet  CAS  Google Scholar 

  3. Yu. A. Simonov, Nucl. Phys. B 307, 512 (1988).

    Article  ADS  Google Scholar 

  4. Yu. A. Simonov, Phys. Usp. 166, 337 (1996); hep-ph/9709344.

    Article  Google Scholar 

  5. A. Di Giacomo, H. G. Dosch, V. I. Shevchenko, and Yu. A. Simonov, Phys. Rep. 372, 319 (2002); hep-ph/0007223.

    Article  ADS  MathSciNet  CAS  Google Scholar 

  6. D. S. Kuzmenko, V. I. Shevchenko, and Yu. A. Simonov, Phys. Usp. 47, 1 (2004); hep-ph/0310190.

    Article  ADS  CAS  Google Scholar 

  7. Yu. A. Simonov, Phys. Rev. D 99, 056012 (2019); arXiv: 1804.08946.

  8. A. Di Giacomo and H. Panagopoulos, Phys. Lett. B 285, 133 (1992).

    Article  ADS  CAS  Google Scholar 

  9. A. Di Giacomo, E. Meggiolaro, and H. Panagopoulos, Nucl. Phys. B 483, 371 (1997); hep-lat/9603018.

    Article  ADS  Google Scholar 

  10. M. D’Elia, A. Di Giacomo, and E. Meggiolaro, Phys. Rev. D 67, 114504 (2003); hep-lat/0205018.

  11. L. Del Debbio, A. Di Giacomo, and Yu. A. Simonov, Phys. Lett. 332, 111 (1994); hep-lat/9403016.

    Article  Google Scholar 

  12. G. S. Bali, N. Brambilla, and A. Vairo, Phys. Lett. B 421, 265 (1998); hep-lat/9709079.

    Article  ADS  CAS  Google Scholar 

  13. V. I. Shevchenko and Yu. A. Simonov, Phys. Rev. Lett. 85, 1811 (2000); hep-ph/0001299; hep-ph/0104135.

    Article  ADS  CAS  PubMed  Google Scholar 

  14. N. Campbell, I. Jorisz, and C. Michael, Phys. Lett. B 167, 91 (1986).

    Article  ADS  Google Scholar 

  15. S. Deldar, Phys. Rev. D 62, 034509 (2000); hep-lat/9911008.

  16. G. S. Bali, Nucl. Phys. Proc. Suppl. 83, 422 (2000); hep-lat/9908021.

    ADS  Google Scholar 

  17. G. ’t Hooft, Nucl. Phys. B 138, 1 (1978).

    Article  ADS  Google Scholar 

  18. J. M. Cornwall, Nucl. Phys. B 157, 392 (1979).

    Article  ADS  Google Scholar 

  19. J. Greensite, EPJ Web Conf. 137, 01009 (2017).

    Article  Google Scholar 

  20. R. Pasechnik and M. Sumbera, Universe 7, 330 (2021); arXiv: 2109.07600.

  21. M. Faber, J. Greensite, and S. Olejnic, Phys. Rev. D 57, 2603 (1998).

    Article  ADS  CAS  Google Scholar 

  22. W. Kamieh, J. Biddle, and D. B. Leinweber, arXiv: 2302.0044.

  23. C. Borgs, Nucl. Phys. B 261, 455 (1985);

    Article  ADS  Google Scholar 

  24. E. Manousakis and J. Polonyi, Phys. Rev. Lett. 58, 847 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. G. S. Bali, J. Finberg, U. M. Heller, F. Karsch, and K. Schilling, Phys. Rev. Lett. 71, 3059 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. F. Karsch, E. Laermann, and M. Lutgemeier, Phys. Lett. B 546, 94 (1995); hep-lat/9411020.

    Article  ADS  Google Scholar 

  27. P. Ginsparg, Nucl. Phys. B 170, 388 (1980).

    Article  ADS  Google Scholar 

  28. K. Kajantee, M. Laine, K. Rummukainen, and M. E. Shaposhnikov, Nucl. Phys. B 458, 90 (1996).

    Article  ADS  Google Scholar 

  29. K. Kajantee, M. Laine, K. Rummukainen, and M. E. Shaposhnikov, Nucl. Phys. B 503, 357 (1997).

    Article  ADS  Google Scholar 

  30. A. Hart and O. Philipsen, Nucl. Phys. B 572, 243 (2000).

    Article  ADS  Google Scholar 

  31. M. Laine and O. Philipsen, Phys. Lett. B 459, 259 (1999).

    Article  ADS  CAS  Google Scholar 

  32. A. Cucchieri, F. Karsch, and P. Petreczky, Phys. Lett. B 497, 80 (2001).

    Article  ADS  CAS  Google Scholar 

  33. Yu. A. Simonov, Phys. At. Nucl. 85, 727 (2022); arXiv: 2203.07850.

    Article  CAS  Google Scholar 

  34. A. Bazavov, H.-T. Ding, P. Hedge, O. Kaczmarek, F. Karsch, E. Laermann, Y. Maezawa, Swagato Mukherjee, H. Ohno, P. Petreczky, C. Schmidt, S. Sharma, W. Soeldner, and M. Wagner, Phys. Rev. Lett. 111, 082301 (2013); arXiv: 1304.7220.

  35. R. Brower, P. Rossi, and C. I. Tan, Nucl. Phys. B 190, 699 (1981).

    Article  ADS  Google Scholar 

  36. O. Kaczmarek, F. Karsch, E. Laermann, and M. Lutgemeier, Phys. Rev. D 62, 034021 (2000); hep-lat/9908010.

  37. P. Bicudo, N. Cardoso, O. Oliveira, and P. J. Silva, PoS(LATTICE2011) 300 (2011); arXiv: 1111.0336.

  38. Z. Fodor and S. D. Katz, J. High Energy Phys. 0203, 014 (2002); hep-lat/0106002.

  39. M. Doring, K. Huebner, O. Kaczmarek, and F. Karsch, Phys. Rev. D 75, 054504 (2007); hep-lat/0702009.

  40. F. Karsch, E. Laermann, and A. Peikert, Phys. Lett. B 478, 447 (2000); hep-lat/0002003.

    Article  ADS  CAS  Google Scholar 

  41. F. Karsch, K. Redlich, and A. Tawfik, Eur. Phys. J. C 28, 549 (2003); hep-ph/0303108.

    Article  ADS  Google Scholar 

  42. Yu. A. Simonov, Phys. At. Nucl. 58, 309 (1995); hep-ph/9311216.

    Google Scholar 

  43. Yu. A. Simonov, in Selected Topics in Nonperturbative QCD, Lecture at International Enrico Fermi School of Physics, p. 319; hep-ph/9509404.

  44. Yu. A. Simonov, JETP Lett. 55, 627 (1992);

    ADS  Google Scholar 

  45. JETP Lett. 54, 249 (1991).

  46. Yu. A. Simonov, Ann. Phys. 323, 783 (2008); hep-ph/0702266; E. V. Komarov and Yu. A. Simonov, Ann. Phys. 323, 1230 (2008); arXiv: 0707.0781.

  47. A. V. Nefediev, Yu. A. Simonov, and M. A. Trusov, Int. J. Mod. Phys. E 18, 549 (2009).

    Article  ADS  CAS  Google Scholar 

  48. Yu. A. Simonov, JETP Lett. 55, 605 (1992);

    Google Scholar 

  49. Phys. At. Nucl. 58, 309 (1995); hep-ph/9311216.

  50. V. D. Orlovsky and Yu. A. Simonov, Phys. Rev. D 89, 074034 (2014); arXiv: 1312.4178.

  51. Yu. A. Simonov and M. A. Trusov, Phys. Lett. B 650, 36 (2007); hep-ph/0703277.

    Article  ADS  CAS  Google Scholar 

  52. Z. Fodor and S. D. Katz, arXiv: 0908.3341.

  53. O. Philipsen, Prog. Part. Nucl. Phys. 70, 55 (2013); arXiv: 1207.5999.

    Article  ADS  CAS  Google Scholar 

  54. P. Petreczky, arXiv: 1301.6188.

  55. Yu. A. Simonov, Nucl. Phys. B 592, 350 (2001).

    Article  ADS  Google Scholar 

  56. Yu. A. Simonov, Proc. Steklov Int. Math. 272, 223 (2011); arXiv: 1003.3608.

  57. Yu. A. Simonov and V. I. Shevchenko, Adv. High Energy Phys. 2009, 873051 (2009); arXiv: 0902.1405.

  58. M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Phys. Rev. Lett. 42, 297 (1978).

    Article  ADS  Google Scholar 

  59. R. Crewther, Phys. Rev. Lett. 38, 1421 (1972).

    Article  ADS  Google Scholar 

  60. M. Chanovitz and J. Ellis, Phys. Lett. B 40, 397 (1972).

    Article  ADS  Google Scholar 

  61. J. Collins, L. Duncan, and S. Joglecar, Phys. Rev. D 16, 438 (1977).

    Article  ADS  CAS  Google Scholar 

  62. Yu. A. Simonov, Phys. At. Nucl. 84, 1195 (2021); arXiv: 2103.08223.

    Article  CAS  Google Scholar 

  63. A. Ali Khan et al. (CP-PACS Collab.), Nucl. Phys. Proc. Suppl. 83, 384 (2000).

    Article  ADS  Google Scholar 

  64. B. Brandt, A. Froncis, H. B. Meyer, O. Philipsen, and H. Witting, Pos(LATTICE2013) 162 (2013); arXiv: 1310.8326.

  65. Y. Aoki, G. Endrodi, Z. Fodor, S. D. Katz, and K. K. Szabo, Phys. Lett. B 643, 46 (2000); hep-lat/0611014.

    Article  ADS  Google Scholar 

  66. S. Borsany, Z. Fodor, C. Hoelbling, S. D. Katz, S. Krieg, C. Ratti, and K. K. Szabo, J. High Energy Phys. 1009, 073 (2010); arXiv: 1005.3508.

  67. G. S. Bali, F. Bruckmann, M. Constantinou, M. Costa, G. Endrodi, Z. Fodor, S. D. Katz, S. Krieg, H. Panagopoulos, A. Schafer, and K. K. Szabo, PoS(Confinement X) 198 (2012); arXiv: 1301.5826.

  68. R. D. Pisarsky and O. Alvarez, Phys. Rev. D 26, 3735 (1982).

    Article  ADS  Google Scholar 

  69. V. D. Orlovsky and Yu. A. Simonov, Phys. Rev. D 89, 054012 (2014); arXiv: 1311.1087.

  70. G. S. Bali, F. Bruckmann, G. Endrodi, Z. Fodor, S. D. Katz, S. Krieg, A. Schafer, K. K. Szabo, J. High Energy Phys. 1202, 044 (2012); arXiv: 1111.4956.

  71. Yu. A. Simonov, Phys. At. Nucl. 85, 480 (2022); arXiv: 2201.09253.

    Article  CAS  Google Scholar 

  72. A. Bazavov, H.-T. Ding, P. Hedge, O. Kaczmarek, F. Karsch, N. Karthik, E. Laermann, A. Lahiri, R. Larsen, S.-T. Li, S. Mukherjee, H. Ohno, P. Petreczky, H. Sandmeyer, C. Schmidt, S. Sharma, et al., Phys. Lett. B 795, 15 (2019); arXiv: 1812.08235.

    Article  ADS  MathSciNet  CAS  Google Scholar 

  73. M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Nucl. Phys. B 147, 385 (1979);

    Article  ADS  Google Scholar 

  74. Nucl. Phys. B 147, 448 (1979).

  75. G. S. Bali, F. Bruckmann, G. Endrodi, A. Athenodorou, D. Bachtis, C. Bonanno, N. Brambilla, E. Bratkovskaya, M. Bruno, M. Caselle, C. Conti, R. Contino, L. Cosmai, F. Cuteri, L. Del Debbio, M. D’Elia, et al., J. High Energy Phys. 1408, 177 (2014); arXiv: 1406.0269.

    Article  ADS  Google Scholar 

  76. M. D’Elia, L. Maio, F. Sanfilippo, and A. Stanzione, Phys. Rev. D 105, 034511 (2021); arXiv: 2111.11237.

  77. C. Bonati, M. D’Elia, M. Mariti, M. Mesiti, F. Negro, A. Rucci, and F. Sanfilippo, Phys. Rev. D 94, 094007 (2016); arXiv: 1607.08160.

  78. M. D’Elia, F. Manigrasso, F. Negro, and F. Sanfilippo, Phys. Rev. D 98, 054509 (2018); arXiv: 1808.07008.

  79. Yu. A. Simonov, Int. J. Mod. Phys. A 36, 2150248 (2021); arXiv: 2108.05599.

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. S. Lukashov or Yu. A. Simonov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lukashov, M.S., Simonov, Y.A. Theory of the Deconfinement in QCD. Phys. Atom. Nuclei 86, 1256–1266 (2023). https://doi.org/10.1134/S1063778824010332

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778824010332

Navigation