Skip to main content
Log in

New Break Near 10 TeV in the Energy Spectrum of Protons According to Data from Space-Based Instruments: Astrophysical Interpretation

  • ELEMENTARY PARTICLES AND FIELDS/Experiment
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Recent experimental data from space-based instruments of the DAMPE and CALET collaborations have shown that the energy spectrum of protons has a new feature, a break in the \({\sim}10\) TeV region. In this energy range, the spectrum index of the observed particles varies from \({-}\)2.6 to \({-}\)2.9. The purpose of this work is to establish the local sources’s position and age that determine this break, the index of the proton generation spectrum in them, as well as the astrophysical interpretation of the results obtained in the DAMPE and CALET experiments. Within the framework of the model of nonclassical diffusion of cosmic rays developed by the authors, which has break due to the propagation of particles in a sharply inhomogeneous (fractal type) galactic medium, it is shown that break in this energy range is formed by tevatron located at a distance of \({\sim}120\) pc from the Earth. This source, whose age is \({\sim}5\times 105\) years, generates particles with a spectrum index \({\sim}2.7\). The power-law behavior of the proton spectrum before and after the break, soft spectrum of particle generation in the source, first obtained in the DAMPE and CALET experiments, should be considered as an indication of the need to revise the standard paradigm accepted today about the sources of cosmic rays, mechanisms of particle acceleration in them and particle propagation in the Galaxy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

REFERENCES

  1. G. F. Krymskii, Sov. Phys. Dokl. 22, 327 (1977).

    ADS  MathSciNet  Google Scholar 

  2. W. I. Axford, E. Leer, and G. Skadron, in Proceedings of the International Cosmic Ray Conference (1977), Vol. 11, p. 132.

  3. A. R. Bell, Mon. Not. R. Astron. Soc. 182, 147 (1978).

    Article  ADS  CAS  Google Scholar 

  4. E. G. Berezhko and L. G. Ksenofontov, J. Exp. Theor. Phys. 89, 391 (1999).

    Article  ADS  CAS  Google Scholar 

  5. V. L. Ginzburg and S. I. Syrovatskii, The Origin of Cosmic Rays (Pergamon, Oxford, 1964).

    Book  Google Scholar 

  6. V. S. Berezinskii, S. V. Bulanov, V. A. Dogiel, and V. S. Ptuskin, Astrophysics of Cosmic Rays (North-Holland, Amsterdam, 1990).

    Google Scholar 

  7. A. D. Panov, J. H. Adams, H. S. Ahn, G. L. Bashinzhagyan, J. W. Watts, J. P. Wefel, J. Wu, O. Ganel, T. G. Guzik, V. I. Zatsepin, I. Isbert, K. C. Kim, M. Christl, E. N. Kouznetsov, M. I. Panasyuk, E. S. Seo, et al., Bull. Russ. Acad. Sci.: Phys. 73, 564 (2009).

    Article  Google Scholar 

  8. H. S. Ahn, P. Allison, M. G. Bagliesi, J. J. Beatty, G. Bigongiari, J. T. Childers, N. B. Conklin, S. Coutu, M. A. DuVernois, O. Ganel, J. H. Han, J. A. Jeon, K. C. Kim, M. H. Lee, L. Lutz, P. Maestro, A. Malinin, P. S. Marrocchesi, et al., Astrophys. J. Lett. 714, L89 (2010).

    Article  ADS  CAS  Google Scholar 

  9. O. Adriani et al. (PAMELA Collab.), Science (Washington, DC, U. S.) 332, 69 (2011).

    Article  ADS  CAS  Google Scholar 

  10. M. Aguilar et al. (AMS-02 Collab.), Phys. Rev. Lett. 114, 171103 (2015).

  11. M. Aguilar et al. (AMS-02 Collab.), Phys. Rev. Lett. 115, 211101 (2015).

  12. M. Aguilar et al. (AMS-02 Collab.), Phys. Rev. Lett. 119, 251101 (2017).

  13. M. Aguilar et al. (AMS-02 Collab.), Phys. Rev. Lett. 121, 051103 (2018).

  14. M. Aguilar et al. (AMS-02 Collab.), Phys. Rev. Lett. 120, 021101 (2018).

  15. A. A. Lagutin and N. V. Volkov, Phys. At. Nucl. 84, 975 (2021).

    Article  CAS  Google Scholar 

  16. Q. An et al. (DAMPE Collab.), Sci. Adv. 5, eaax3793 (2019).

  17. O. Adriani et al. (CALET Collab.), Phys. Rev. Lett. 129, 101102 (2022).

  18. Y. S. Yoon, T. Anderson, A. Barrau, N. B. Conklin, S. Coutu, L. Derome, J. H. Han, J. A. Jeon, K. C. Kim, M. H. Kim, H. Y. Lee, J. Lee, M. H. Lee, S. E. Lee, J. T. Link, A. Menchaca-Rocha, et al., Astrophys. J. 839, 5 (2017).

    Article  ADS  Google Scholar 

  19. E. Atkin, V. Bulatov, V. Dorokhov, N. Gorbunov, S. Filippov, V. Grebenyuk, D. Karmanov, I. Kovalev, I. Kudryashov, A. Kurganov, M. Merkin, A. Panov, D. Podorozhny, D. Polkov, S. Porokhovoy, V. Shumikhin, A. Tkachenko, et al., JETP Lett. 108, 5 (2018).

    Article  ADS  CAS  Google Scholar 

  20. A. A. Lagutin, N. V. Volkov, R. I. Raikin, and A. G. Tyumentsev, J. Phys.: Conf. Ser. 1181, 012023 (2019).

  21. A. A. Lagutin, D. V. Strelnikov, and A. G. Tyumentsev, in Proceedings of the 27th International Cosmic Rays Conference ICRC (2001), Vol. 5, p. 1896.

  22. A. A. Lagutin, Yu. A. Nikulin, and V. V. Uchaikin, Nucl. Phys. B Proc. Suppl. 97, 267 (2001).

    Article  ADS  CAS  Google Scholar 

  23. A. A. Lagutin and V. V. Uchaikin, Nucl. Instrum. Methods Phys. Res., Sect. B 201, 212 (2003).

    CAS  Google Scholar 

  24. A. Shukurov, A. P. Snodin, A. Seta, P. J. Bushby, and T. S. Wood, Astrophys. J. Lett. 839, L16 (2017).

    Article  ADS  Google Scholar 

  25. S. G. Samco, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives—Theory and Applications (Gordon and Breach, New York, 1993).

    Google Scholar 

  26. V. V. Uchaikin and V. M. Zolotarev, Chance and Stability. Stable Distributions and Their Applications (VSP, Utrecht, 1999).

    Book  Google Scholar 

  27. V. M. Zolotarev, V. V. Uchaikin, and V. V. Saenko, J. Exp. Theor. Phys. 88, 780 (1999).

    Article  ADS  CAS  Google Scholar 

  28. A. A. Lagutin, V. V. Makarov, and A. G. Tyumentsev, in Proceedings of the 27th International Cosmic Rays Conference ICRC (2001), Vol. 5, p. 1889.

  29. T. Kobayashi, Y. Komori, K. Yoshida, and J. Nishimura, Astrophys. J. 601, 340 (2004).

    Article  ADS  CAS  Google Scholar 

  30. T. A. Lozinskaya, Supernovae and Stellar Wind in the Interstellar Medium (Am. Inst. Phys., New York, 1992).

    Google Scholar 

  31. I. A. Kudryashov, I. M. Kovalev, A. A. Kurganov, F. K. Gasratov, V. V. Latonov, V. D. Yurovskiy, A. D. Panov, and A. N. Turundaevskiy, Bull. Russ. Acad. Sci.: Phys. 85, 379 (2021).

    Article  CAS  Google Scholar 

  32. B. Zhao, Y. Guo, and X. Zhuo, Universe 9, 93 (2023).

    Article  ADS  CAS  Google Scholar 

  33. A. R. Bell, J. H. Matthews, and K. M. Blundell, Mon. Not. R. Astron. Soc. 488, 2466 (2019).

    Article  ADS  CAS  Google Scholar 

  34. M. A. Malkov and F. A. Aharonian, Astrophys. J. 881, 2 (2019).

    Article  ADS  CAS  Google Scholar 

  35. P. Blasi, Nuovo Cim. Riv. Ser. 42, 549 (2019).

    ADS  CAS  Google Scholar 

  36. S. Gabici, C. Evoli, D. Gaggero, P. Lipari, P. Mertsch, E. Orlando, A. Strong, and A. Vittino, Int. J. Mod. Phys. D 28, 1930022 (2019).

Download references

ACKNOWLEDGMENTS

The authors are deeply grateful to the anonymous referee for valuable comments and suggestions, which helped to improve the paper.

Funding

The work is supported by the Russian Science Foundation, grant no. 23-72-00057.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Lagutin or N. V. Volkov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lagutin, A.A., Volkov, N.V. New Break Near 10 TeV in the Energy Spectrum of Protons According to Data from Space-Based Instruments: Astrophysical Interpretation. Phys. Atom. Nuclei 86, 1069–1075 (2023). https://doi.org/10.1134/S1063778824010290

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778824010290

Navigation