Skip to main content
Log in

Magnetorotational Supernova Neutrino Emission Spectra and Prospects for Observations by Large-Size Underwater Telescopes

  • ELEMENTARY PARTICLES AND FIELDS/Experiment
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

We analyze neutrino fluxes near the surface of a protoneutron star in type II supernova explosions. For magnetorotational explosion mechanism it is shown that effective neutrino collisions in a magnetized nucleon gas caused by the neutral current Gamow–Teller component lead to neutrino acceleration. Such an effect originates from spin-projection asymmetry in phase space volume of outer channel neutrino due to nucleon magnetic moment interaction with magnetic field. Respective increase in a hardness of the energy spectrum is favorable for observations of supernova neutrinos using neutrino telescopes. The possibilities of detecting supernova neutrinos by large-volume Cherenkov observatories—KM3NeT and Baikal-GVD—are discussed. As is demonstrated the upper limits of the distance thresholds for such observations can be increased by a factor of \((1.5\sqrt{k}-1/4)\), when employing the \(k\)-fold coincidence technique in data processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

REFERENCES

  1. G. S. Bisnovatyi-Kogan, Stellar Physics (Springer, Berlin, 2011).

    Book  Google Scholar 

  2. S. A. Colgate and R. H. White, Astrophys. J. 143, 626 (1966).

    Article  ADS  CAS  Google Scholar 

  3. H. A. Bethe and H. A. Wilson, Astrophys. J. 295, 14 (1985).

    Article  ADS  CAS  Google Scholar 

  4. H.-T. Janka, T. Melson, and T. Summa, Ann. Rev. Nucl. Part. Sci. 66, 341 (2016).

    Article  ADS  CAS  Google Scholar 

  5. B. Müller, Th. M. Tauris, A. Heger, P. Banerjee, Y.-Zh. Qian, J. Powell, C. Chan, D. W. Gay, and N. Langer, Mon. Not. R. Astron. Soc. 484, 3307 (2019).

    Article  ADS  Google Scholar 

  6. P. Mösta, C. D. Ott, D. Radice, L. F. Roberts, E. Schnetter, and R. Haas, Nature (London, U.K.) 528, 376 (2015).

    Article  ADS  Google Scholar 

  7. J. Guilet and E. Müller, Mon. Not. R. Astron. Soc. 450, 21532171 (2015).

  8. V. N. Kondratyev, Eur. Phys. J. A 50, 7 (2014).

    Article  Google Scholar 

  9. V. N. Kondratyev, Mon. Not. R. Astron. Soc. 480, 5380 (2018).

    Article  ADS  CAS  Google Scholar 

  10. V. N. Kondratyev and Yu. V. Korovina, JETP Lett. 102, 131 (2015).

    Article  ADS  CAS  Google Scholar 

  11. V. N. Kondratyev, Particles 3, 272 (2020).

    Article  Google Scholar 

  12. V. N. Kondratyev, Universe 7, 487 (2021).

    Article  ADS  CAS  Google Scholar 

  13. N. Soker, Astrophys. J. 935, 108 (2022).

    Article  ADS  Google Scholar 

  14. E. P. Mazets, S. V. Golenetskii, V. N. Il’inskii, R. L. Aptekar’, and Yu. A. Guryan, Nature (London, U.K.) 282, 587 (1979).

    Article  ADS  Google Scholar 

  15. D. S. Svinkin, K. Hurley, R. L. Aptekar, S. V. Golenetskii, and D. D. Frederiks, Mon. Not. R. Astron. Soc. 447, 1028 (2015).

    Article  ADS  CAS  Google Scholar 

  16. V. N. Kondratyev and Yu. V. Korovina, Phys. At. Nucl. 80, 558 (2017).

    Article  CAS  Google Scholar 

  17. V. N. Kondratyev, Phys. Part. Nucl. 50, 613 (2019).

    Article  Google Scholar 

  18. T. Prasanna, M. S. B. Coleman, M. J. T. Raives, and A. Thompson, Mon. Not. R. Astron. Soc. 517, 3008 (2022).

    Article  ADS  Google Scholar 

  19. A. Sieverding, K. Langanke, G. Martinez-Pinedo, R. Bollig, H. T. Janka, and A. Heger, Astrophys. J. 876, 151 (2019).

    Article  ADS  CAS  Google Scholar 

  20. T. Kuroda, Astrophys. J. 906, 128 (2021).

    Article  ADS  CAS  Google Scholar 

  21. C. J. Horowitz, Phys. Rev. D 65, 043001 (2002).

  22. V. N. Kondratyev, A. A. Dzhioev, A. I. Vdovin, S. Cherubini, and M. Baldo, Phys. Rev. C 100, 045802 (2019).

  23. V. N. Kondratyev, A. A. Dzhioev, A. I. Vdovin, S. Cherubini, and M. Baldo, Bull. Russ. Acad. Sci.: Phys. 84, 962 (2020).

    Article  CAS  Google Scholar 

  24. V. N. Kondratyev, T. D. Lobanovskaya, and D. B. Torekhan, Particles 5, 128 (2022).

    Article  CAS  Google Scholar 

  25. G.-J. Mao, V. N. Kondratyev, A. Iwamoto, Z.-X. Li, X.-Z. Wu, W. Greiner, and I. N. Mikhalov, Chin. Phys. Lett. 20, 1238 (2003).

    Article  ADS  Google Scholar 

  26. S. Aiello, A. Albert, M. Alshamsi, S. Alves Garre, Z. Aly, A. Ambrosone, F. Ameli, M. Andre, G. Androulakis, M. Anghinilfi, M. Anguita, M. Ardid, S. Ardid, J. Aublin, C. Bagatelas, B. Baret, et al., Eur. Phys. J. C 82, 317 (2022).

    Article  ADS  CAS  Google Scholar 

  27. V. N. Kondratyev, N. G. Khor’kova, and S. Cherubini, Phys. At. Nucl. 85, 924 (2022).

    Article  CAS  Google Scholar 

  28. V. N. Kondratyev and S. Cherubini, Astron. Rep. 67, 144 (2023).

    Article  ADS  Google Scholar 

  29. M. S. Adrian-Martinez, M. Ageron, F. Aharonian, S. Aiello, A. Albert, F. Ameli, E. Anassontzis, M. Andre, G. Androulakis, M. Anghinolfi, G. Anton, M. Ardid, T. Avgitas, G. Barbarino, E. Barbarito, B. Baret, et al., J. Phys. G 43, 084001 (2016).

  30. A. D. Avrorin, A. V. Avrorin, V. M. Aynutdinov, R. Bannash, I. A. Belolaptikov, V. B. Brudanin, N. M. Budnev, I. A. Danilchenko, S. V. Demidov, G. V. Domogatsky, A. A. Doroshenko, R. Dvornicky, A. N. Dyachok, Zh.-A. M. Dzhilkibaev, L. Fajt, S. V. Fialkovsky, et al., EPJ Web Conf. 136, 04007 (2017).

    Article  Google Scholar 

  31. K. Scholberg, Ann. Rev. Nucl. Part. Sci. 62, 81 (2012).

    Article  ADS  CAS  Google Scholar 

  32. R. Abbasi, Y. Abdou, T. Abu-Zayyad, M. Ackermann, J. Adams, J. A. Aguilar, M. Ahlers, M. M. Allen, D. Altmann, K. Andeen, J. Auffenberg, X. Bai, M. Baker, W. Barwick, V. Baum, R. Bay, et al., Astron. Astrophys. 535, A109 (2011);

    Article  Google Scholar 

  33. Astron. Astrophys. 563, C1(E) (2014).

  34. The Garching Core-Collapse Supernova Research. https://wwwmpa.mpa-garching.mpg.de/ccsnarchive/. Accessed July 7, 2023.

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Kondratyev.

Ethics declarations

The author of this work declares that he has no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondratyev, V.N. Magnetorotational Supernova Neutrino Emission Spectra and Prospects for Observations by Large-Size Underwater Telescopes. Phys. Atom. Nuclei 86, 1083–1089 (2023). https://doi.org/10.1134/S106377882401023X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377882401023X

Navigation