Skip to main content
Log in

Mass–Energy Equivalence in Bound Three-Nucleon Systems

  • NUCLEI/Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The mass defect formula reflects the equivalence of mass and energy for bound nuclear systems. We study three-nucleon systems \({}^{3}\)H and \({}^{3}\)He, considering the neutron and proton as indistinguishable particles (AAA model) or taking into account the real masses of neutrons and protons (AAB model). We have focused on conceptual problems of the AAA model, which is widely used for 3\(N\) calculations. In particular, the AAA model is incompatible with the mass defect formula, which naturally corresponds to the AAB model. In addition, the AAA model has a cyclic permutation symmetry, which is breaking in the natural AAB model. The latter problem cannot be eliminated within the perturbative AAA approach, in which the mass difference effect is simulated by correcting the kinetic energy operator. Earlier it was reported that the accuracy of such AAA calculations is 1 keV. An example of the AAB calculation, we numerically estimate the effect of the difference between the neutron and proton masses on the energy calculated without any approximation with the accuracy of 0.1 keV. Another manifestation of the equivalence of mass \(m\) and energy \(E\) can be expressed by the formula \(dE/dm=\textrm{Const}\). To show this dependence of the three-body energy on the nucleon mass, we performed realistic calculations within the AAA approximation, varying the averaged nucleon mass. The mass–energy compensation effect for the three-body Hamiltonian is shown. According to this, we have determined the effective nucleon mass required to compensate for the perturbative effect of a three-body potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

REFERENCES

  1. A. Deltuva and P. U. Sauer, Phys. Rev. C 91, 034002 (2015).

  2. A. Nogga, A. Kievsky, H. Kamada, W. Glöckle, L. E. Marcucci, S. Rosati, and M. Viviani, Phys. Rev. C 67, 034004 (2003).

  3. R. A. Brandenburg, G. S. Chulick, Y. E. Kim, D. J. Klepacki, R. Machleidt, A. Picklesimer, and R. M. Thaler, Phys. Rev. C 37, 781 (1988).

    Article  ADS  CAS  Google Scholar 

  4. S. Adhikari, Dynamical Collision Theory and Its Applications (Academic, New York, 1991).

    Google Scholar 

  5. I. Filikhin, V. M. Suslov, and B. Vlahovic, Int. J. Mod. Phys. E 25, 1650042 (2016).

  6. I. Filikhin, V. M. Suslov, and B. Vlahovic, Few-Body Syst. 58, 71 (2017).

    Article  ADS  Google Scholar 

  7. I. Filikhin, V. M. Suslov, and B. Vlahovic, J. Phys. G: Nucl. Part. Phys. 46, 105103 (2019).

  8. A. Nannini and L. E. Marcucci, Front. Phys. 6, 122 (2018).

    Article  Google Scholar 

  9. R. N. Perez, E. Garrido, J. E. Amaro, and E. Ruiz Arriola, Phys. Rev. C 90, 047001 (2014).

  10. E. Ruiz Arriola, J. E. Amaro, and R. Navarro Perez, Front. Phys. 8, 1 (2020).

    Article  Google Scholar 

  11. P. Maris, E. Epelbaum, R. J. Furnstahl, J. Golak, K. Hebeler, T. Hüther, H. Kamada, H. Krebs, Ulf-G. Meißner, J. A. Melendez, A. Nogga, P. Reinert, R. Roth, R. Skibiński, V. Soloviov, K. Topolnicki, et al., Phys. Rev. C 103, 054001 (2021).

  12. M. Kamimura and H. Kameyama, Nucl. Phys. A 508, 17 (1990).

    Article  ADS  Google Scholar 

  13. C. R. Chen, G. L. Payne, J. L. Friar, and B. F. Gibson, Phys. Rev. C 31, 2266 (1985).

    Article  ADS  CAS  Google Scholar 

  14. A. Nogga, D. Huber, H. Kamada, and W. Glockle, Phys. Lett. B 409, 19 (1997).

    Article  ADS  CAS  Google Scholar 

  15. A. Kievsky, M. Viviani, and S. Rossati, Nucl. Phys. A 577, 511 (1994).

    Article  ADS  Google Scholar 

  16. R. B. Wiringa, R. A. Smith, and T. L. Ainsworth, Phys. Rev. C 29, 1207 (1984).

    Article  ADS  CAS  Google Scholar 

  17. G. A. Miller and W. T. H. van Oers, in Charge Independence and Charge Symmetry Symmetries and Fundamental Interactions in Nuclei, Ed. by W. C. Haxton and E. M. Henley (World Sci., Singapore, 1995).

    Google Scholar 

  18. Q. Chen, C. R. Howell, T. S. Carman, W. R. Gibbs, B. F. Gibson, A. Hussein, M. R. Kiser, G. Mertens, C. F. Moore, C. Morris, A. Obst, E. Pasyuk, C. D. Roper, F. Salinas, H. R. Setze, I. Slaus, et al., Phys. Rev. C 77, 054002 (2008).

  19. R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Phys. Rev. C 51, 38 (1995).

    Article  ADS  CAS  Google Scholar 

  20. R. Lazauskas and J. Carbonell, Phys. Rev. C 70, 044002 (2004).

  21. R. Lazauskas, Phys. Rev. C 79, 054007 (2009).

  22. L. E. Marcucci, F. Sammarruca, M. Viviani, and R. Machleidt, in Recent Progress in Few-Body Physics, Proceedings of the 22nd International Conference on Few-Body Problems in Physics, FB22 2018, Ed. by N. Orr, M. Ploszajczak, F. Marqués, and J. Carbonell (Springer, 2020), p. 439.

  23. R. Skibinski, J. Golak, K. Topolnicki, H. Witala, E. Epelbaum, W. Glöckle, H. Krebs, A. Nogga, and H. Kamada, Phys. Rev. C 84, 054005 (2011).

  24. M. Piarulli and I. Tews, Front. Phys. 7, 245 (2020).

    Article  Google Scholar 

  25. S. C. Pieper, V. R. Pandharipande, R. B. Wiringa, and J. Carlson, Phys. Rev. C 64, 014001 (2001).

  26. S. C. Pieper, AIP Conf. Proc. 1011, 143 (2008).

    Article  ADS  CAS  Google Scholar 

  27. N. Kalantar-Nayestanaki and E. Epelbaum, Nucl. Phys. News 17, 22 (2007).

    Article  ADS  Google Scholar 

  28. L. Girlanda, A. Kievsky, M. Viviani, and L. E. Marcucci, Phys. Rev. C 99, 054003 (2019).

  29. M. Gattobigio, A. Kievsky, and M. Viviani, Phys. Rev. C 100, 034004 (2019).

  30. C.-J. Yang, A. Ekström, C. Forssén, G. Hagen, G. Rupak, and U. van Kolck, arXiv: 2109.13303v1 [nucl-th].

  31. M. Viviani, E. Filandri, L. Girlanda, C. Gustavino, A. Kievsky, L. E. Marcucci, and R. Schiavilla, Phys. Rev. C 105, 014001 (2022).

  32. R. Ya. Kezerashvili, in Recent Progress in Few-Body Physics, FB22 2018, Vol. 238 of Springer Proceedings in Physics (Springer, New York, 2020).

  33. J. W. Holt, M. Kawaguchi, and N. Kaiser, Front. Phys. 8, 100 (2020).

    Article  Google Scholar 

  34. C. Kittel, Introduction to Solid State Physics, 8th ed. (Wiley, New York, 2004).

    Google Scholar 

  35. I. Filikhin, V. M. Suslov, and B. Vlahovic, Phys. Rev. B 73, 205332 (2006).

  36. B.-A. Li, B.-J. Cai, L.-W. Chen, and J. Xu, Prog. Part. Nucl. Phys. 99, 29 (2018).

    Article  ADS  CAS  Google Scholar 

  37. P. Coleman, Introduction to Many-Body Physics (Cambridge Univ. Press, Cambridge, 2015).

    Book  Google Scholar 

  38. L. D. Landau and S. I. Pekar, Zh. Eksp. Teor. Fiz. 18, 419 (1948).

    CAS  Google Scholar 

  39. K. A. Brueckner, Phys. Rev. 97, 1353 (1955).

    Article  ADS  CAS  Google Scholar 

  40. J. P. Jeukenne, A. Lejeune, and C. Mahaux, Phys. Rep. 25, 83 (1976).

    Article  ADS  Google Scholar 

  41. L. D. Faddeev and S. P. Merkuriev, Quantum Scattering Theory for Several Particle Systems (Kluwer Academic, Dordrecht, 1993).

    Book  Google Scholar 

  42. J. V. Noble, Phys. Rev. 161, 945 (1967).

    Article  ADS  CAS  Google Scholar 

  43. A. Laverne and C. Gignoux, Nucl. Phys. A 203, 597 (1973).

    Article  ADS  Google Scholar 

  44. C. Gignoux, C. Laverne, and S. P. Merkuriev, Phys. Rev. Lett. 33, 1350 (1974);

    Article  ADS  CAS  Google Scholar 

  45. S. P. Merkuriev, C. Gignoux, and A. Laverne, Ann. Phys. (N.Y.) 99, 30 (1976).

    Article  ADS  Google Scholar 

  46. V. M. Suslov, I. Filikhin, B. Vlahovic, M. A. Braun, and I. Slaus, Fizika B (Zagreb) 20, 261 (2011).

  47. Yu. A. Kuperin, D. M. Latypov, S. P. Merkuriev, M. Bruno, and F. Cannata, Sov. J. Nucl. Phys. 53, 942 (1991).

    CAS  Google Scholar 

  48. I. Filikhin, R. Ya. Kezerashvili, V. M. Suslov, and B. Vlahovic, Few-Body Syst. 59, 33 (2018).

    Article  ADS  Google Scholar 

  49. K. Miyagawa and W. Gloeckle, Phys. Rev. C 48, 2576 (1993).

    Article  ADS  CAS  Google Scholar 

  50. R. Lazauskas and J. Carbonell, Few-Body Syst. 60, 62 (2019).

    Article  ADS  Google Scholar 

  51. J. L. Friar, B. F. Gibson, and G. L. Payne, Phys. Rev. C 42, 1211 (1990).

    Article  ADS  CAS  Google Scholar 

  52. R. Ya. Kezerashvili, I. Filikhin, and B. Vlahovic, Report Presented at the 3rd J-PARC HEF-ex WS, March 14–16, 2023. https://kds.kek.jp/event/44086/contributions/ 232160/.

  53. I. Filikhin, R. Ya. Kezerashvili, V. M. Suslov, Sh. M. Tsiklauri, and B. Vlahovic, Phys. Rev. D 102, 094027 (2020).

  54. 2018 CODATA Recommended Values. https://physics.nist.gov/cuu/Constants/index.html.

  55. J. E. Purcell, J. H. Kelley, E. Kwan, C. G. Sheu, and H. R. Weller, Nucl. Phys. A 848, 1 (2010).

    Article  ADS  Google Scholar 

  56. J. E. Purcell, J. H. Kelley, E. Kwan, and C. G. Sheu, Nucl. Phys. 968, 71 (2017).

    Article  Google Scholar 

  57. A. Kievsky, S. Rosati, M. Viviani, L. E. Marcucci, and L. Girlanda, J. Phys. G: Nucl. Part. Phys. 35, 063101 (2008).

  58. R. B. Wiringa, S. Pastore, S. C. Pieper, and G. A. Miller, Phys. Rev. C 88, 044333 (2013).

  59. I. Filikhin and B. Vlahovic, Phys. Rev. C 101, 055203 (2020).

  60. I. V. Simenog, I. S. Dotsenko, and B. E. Grinyuk, nucl-th/0212047; I. S. Dotsenko and I. V. Simenog, Ukr. J. Phys. 51, 841 (2006).

    Google Scholar 

  61. J. L. Friar, B. F. Gibson, G. Berthold, W. Glockle, Th. Cornelius, H. Witala, J. Haidenbauer, Y. Koike, G. L. Payne, J. A. Tjon, and W. M. Kloet, Phys. Rev. C 42, 1838 (1990).

    Article  ADS  CAS  Google Scholar 

  62. J. Bernabeu, V. M. Suslov, T. A. Strizh, and S. I. Vinitsky, Hyperfine Interact. 101–102, 391 (1996).

    Article  ADS  Google Scholar 

  63. B. S. Pudliner, V. R. Pandharipande, J. Carlson, S. C. Pieper, and R. B. Wiringa, Phys. Rev. C 56, 1720 (1997).

    Article  ADS  CAS  Google Scholar 

  64. C. A. Garcia Canal, E. M. Santangelo, and H. Vucetich, Phys. Rev. Lett. 53, 1430 (1984).

    Article  ADS  CAS  Google Scholar 

  65. H. Witala, J. Golak, R. Skibiński, K. Topolnicki, E. Epelbaum, H. Krebs, and P. Reinert, Phys. Rev. C 104, 014002 (2021).

  66. C. van der Leun and C. Alderliesten, Nucl. Phys. A 380, 261 (1982).

    Article  ADS  Google Scholar 

  67. I. Filikhin, A. Karoui, and B. Vlahovic, Int. J. Mod. Phys. E 31, 2250098 (2022).

  68. I. Filikhin, V. M. Suslov, and B. Vlahovic, J. Phys. G: Nucl. Part. Phys. 31, 1207 (2005).

    Article  ADS  CAS  Google Scholar 

  69. H. Moriya, H. Tajima, W. Horiuchi, K. Iida, and E. Nakano, Phys. Rev. C 104, 065801 (2021).

Download references

Funding

This work was supported by US National Science Foundation, HRD-1345219 award and the Department of Energy/National Nuclear Security Administration, award NA0003979.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Filikhin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filikhin, I., Suslov, V.M. & Vlahovic, B. Mass–Energy Equivalence in Bound Three-Nucleon Systems. Phys. Atom. Nuclei 86, 931–945 (2023). https://doi.org/10.1134/S1063778824010186

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778824010186

Navigation