Skip to main content
Log in

Influence of Relativistic Rotation on QCD Properties

  • ELEMENTARY PARTICLES AND FIELDS/Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

This paper is devoted to the study of QCD properties affected by relativistic rotation. The presented results were obtained within the first-principle lattice simulation of gluodynamics and in QCD with dynamical quarks. We discuss how relativistic rotation influences confinement/deconfinement and chiral symmetry breaking/restoration phase transitions. We also focus on the moment of inertia of gluon plasma, which unexpectedly takes a negative value below the ‘‘supervortical temperature’’ \(T_{s}=1.50(10)T_{c}\), vanishes at \(T=T_{s}\), and becomes a positive quantity at higher temperatures. The negative moment of inertia indicates a thermodynamic instability of rigid rotation. Finally, we discuss the spatial structure of rotating gluon plasma and demonstrate the emergence of an inhomogeneous phase transition in a certain range of temperatures and rotation velocities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

REFERENCES

  1. L. Adamczyk et al. (STAR Collab.), Nature (London, U.K.) 548, 62 (2017); arXiv: 1701.06657.

    ADS  CAS  Google Scholar 

  2. S. Ebihara, K. Fukushima, and K. Mameda, Phys. Lett. B 764, 94 (2017); arXiv: 1608.00336.

    Article  ADS  CAS  Google Scholar 

  3. M. Chernodub and S. Gongyo, J. High Energy Phys. 1701, 136 (2017); arXiv: 1611.02598.

    Article  ADS  Google Scholar 

  4. Y. Jiang and J. Liao, Phys. Rev. Lett. 117, 192302 (2016); arXiv: 1606.03808.

  5. H. Zhang, D. Hou, and J. Liao, Chin. Phys. C 44, 111001 (2020); arXiv: 1812.11787.

  6. X. Wang, M. Wei, Z. Li, and M. Huang, Phys. Rev. D 99, 016018 (2019); arXiv: 1808.01931.

  7. M. N. Chernodub, Phys. Rev. D 103, 054027 (2021); arXiv: 2012.04924.

  8. X. Chen, L. Zhang, D. Li, D. Hou, and M. Huang, J. High Energy Phys. 2107, 132 (2021); arXiv: 2010.14478.

    Article  ADS  Google Scholar 

  9. N. Sadooghi, S. M. A. Tabatabaee Mehr, and F. Taghinavaz, Phys. Rev. D 104, 116022 (2021); arXiv: 2108.12760.

  10. Y. Fujimoto, K. Fukushima, and Y. Hidaka, Phys. Lett. B 816, 136184 (2021); arXiv: 2101.09173.

  11. A. A. Golubtsova, E. Gourgoulhon, and M. K. Usova, Nucl. Phys. B 979, 115786 (2022); arXiv: 2107.11672.

  12. Y.-Q. Zhao, S. He, D. Hou, L. Li, and Z. Li, J. High Energy Phys. 2304, 115 (2023); arXiv: 2212.14662.

    Article  ADS  Google Scholar 

  13. A. A. Golubtsova and N. S. Tsegelnik, Phys. Rev. D 107, 106017 (2023); arXiv: 2211.11722.

  14. N. R. F. Braga, L. F. Ferreira, and O. C. Junqueira, Phys. Lett. B 847, 138265 (2023); arXiv: 2301.01322.

  15. M. N. Chernodub, arXiv: 2210.05651.

  16. M. N. Chernodub, arXiv: 2208.04808.

  17. S. Chen, K. Fukushima, and Y. Shimada, Phys. Rev. Lett. 129, 242002 (2022); arXiv: 2207.12665.

  18. A. Yamamoto and Y. Hirono, Phys. Rev. Lett. 111, 081601 (2013); arXiv: 1303.6292.

  19. V. Braguta, A. Kotov, D. Kuznedelev, and A. Roenko, JETP Lett. 112, 6 (2020).

    Article  ADS  CAS  Google Scholar 

  20. V. V. Braguta, A. Y. Kotov, D. D. Kuznedelev, and A. A. Roenko, Phys. Rev. D 103, 094515 (2021); arXiv: 2102.05084.

  21. V. Braguta, A. Y. Kotov, D. Kuznedelev, and A. Roenko, PoS(LATTICE2021) 125 (2021); arXiv: 2110.12302.

  22. V. V. Braguta, A. Kotov, A. Roenko, and D. Sychev, PoS(LATTICE2022) 190 (2022); arXiv: 2212.03224.

  23. V. V. Braguta, M. N. Chernodub, A. A. Roenko, and D. A. Sychev, arXiv: 2303.03147.

  24. V. V. Braguta, I. E. Kudrov, A. A. Roenko, D. A. Sychev, and M. N. Chernodub, JETP Lett. 117, 639 (2023).

    Article  ADS  CAS  Google Scholar 

  25. J.-C. Yang and X.-G. Huang, arXiv: 2307.05755.

  26. Y. Iwasaki, Nucl. Phys. B 258, 141 (1985).

    Article  ADS  Google Scholar 

  27. B. Sheikholeslami and R. Wohlert, Nucl. Phys. B 259, 572 (1985).

    Article  ADS  Google Scholar 

  28. V. E. Ambruş and M. N. Chernodub, Phys. Rev. D 108, 085016 (2023); arXiv: 2304.05998.

  29. G. Boyd, J. Engels, F. Karsch, E. Laermann, C. Legeland, M. Lutgemeier, and B. Petersson, Nucl. Phys. B 469, 419 (1996); hep-lat/9602007.

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Andrey Kotov and Oleg Teryaev for useful discussions. This work has been carried out using computing resources of the Federal collective usage center Complex for Simulation and Data Processing for Mega-science Facilities at NRC ‘‘Kurchatov Institute’’, http://ckp.nrcki.ru/ and the Supercomputer ‘‘Govorun’’ of Joint Institute for Nuclear Research.

Funding

This work was supported by the Russian Science Foundation, project no. 23-12-00072.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Braguta, M. N. Chernodub, I. E. Kudrov, A. A. Roenko or D. A. Sychev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braguta, V.V., Chernodub, M.N., Kudrov, I.E. et al. Influence of Relativistic Rotation on QCD Properties. Phys. Atom. Nuclei 86, 1249–1255 (2023). https://doi.org/10.1134/S1063778824010150

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778824010150

Navigation