Skip to main content
Log in

SRC Based Model for the Photonuclear Reactions on \({N=Z}\) Light Nuclei

  • NUCLEI/Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The short-ranged correlated nucleonic structures (SRCs) inside nuclei have been confirmed using a diverse set of energetic probes like photons, pions, \(e^{-}\), and hadrons. In \(N=Z\) light nuclei, the strong \(NN\) interaction between neutrons (\(n\)) and protons (\(p\)) occupying similar orbitals is not restricted by Pauli’s Principle and will be enhanced by the presence of opposite surface charge distributions in \(n\) and \(p\). Additionally, the tensor nature of \(NN\) interaction would lead to the formation of quasi-deuterons or short-ranged \(np\) correlated structures in nuclei as observed in numerous experimental works. By scaling the well-known photonuclear cross-section formulae for free deuteron with an appropriate \(n\)\(p\) separation energy and \(r_{0t}\) parameter, the quasi-deuteron or \(\sigma(\gamma,np)\) cross-sections for some of \(N=Z\) light nuclei are computed. Using the Gunn–Irving approach for \((\gamma,N)\) channel, the total photonuclear cross-sections \((\sigma_{\text{tot}})\) are evaluated. A significant fraction of \(\sigma_{\text{tot}}\) in the GDR region may be accounted for by the \(\sigma(\gamma,N)\) contribution, which decreases quickly for higher \(E_{\gamma}\) values. In contrast, the \((\gamma,np)\) contribution dominates for \(E_{\gamma}>50\) MeV. The current research proposes an alternative and viable formalism for calculating the photonuclear cross-sections for the \(N=Z\) light nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

REFERENCES

  1. M. Goldhaber and E. Teller, Phys. Rev. 74, 1046 (1948).

    Article  ADS  CAS  Google Scholar 

  2. H. Steinwedel, J. H. D. Jensen, and P. Jensen, Phys. Rev. 79, 1019 (1950).

    Google Scholar 

  3. E. D. Courant, Phys. Rev. 82, 703 (1951).

    Article  ADS  CAS  Google Scholar 

  4. J. S. Levinger, Phys. Rev. 84, 43 (1951).

    Article  ADS  CAS  Google Scholar 

  5. I. J. D. MacGregor, SciPost Phys. Proc. 3, 010 (2020).

  6. R. Dalal and I. J. D. MacGregor, arXiv: 2210.06114

  7. H. J. Weyer, Phys. Rep. 195, 295 (1990).

    Article  ADS  CAS  Google Scholar 

  8. L. S. Azhgirei, I. K. Vzorov, V. P. Zrelov, M. G. Meshcheriakov, B. S. Neganov, and A. F. Shabudin, Sov. Phys. JETP 6, 911 (1958).

    ADS  CAS  Google Scholar 

  9. R. J. Sutter, J. L. Friedes, H. Palevsky, G. W. Bennett, G. J. Igo, W. D. Simpson, G. C. Phillips, D. M. Corley, N. S. Wall, and R. L. Stearns, Phys. Rev. Lett. 19, 1189 (1967).

    Article  ADS  Google Scholar 

  10. S. Terashima et al., Phys. Rev. Lett. 121, 242501 (2018).

  11. C. Lorce, Phys. Rev. Lett. 125, 232002 (2020).

  12. J. R. West, arXiv: 2009.06968v3

  13. H. Arenhovel and M. Sanzone, Photodisintegration of the Deuteron (Springer, Berlin, 1991).

    Book  Google Scholar 

  14. J. C. Gunn and J. Irving, Philos. Mag. 42, 1353 (1951).

    Article  CAS  Google Scholar 

  15. R. Dalal and R. Beniwal, PoS (PANIC2021) 323.

  16. J. S. Levinger, Phys. Lett. B 82, 181 (1979).

    Article  ADS  Google Scholar 

  17. M. B. Chadwick, P. Obloinsky, P. E. Hodgson, and G. Reffo, Phys. Rev. C 37, 814 (1991).

    Article  ADS  Google Scholar 

  18. S. Quaglioni, W. Leidemann, G. Orlandini, N. Barnea, and V. D. Efros, Phys. Rev. C 69, 044002 (2004).

  19. A. V. Varlamov, V. V. Varlamov, D. S. Rudenko, and M. E. Stepanov, Report INDC (NDS)-394 (Vienna, 1999).

  20. M. Riou, Rev. Mod. Phys. 37, 375 (1965).

    Article  ADS  CAS  Google Scholar 

  21. T. Yamagata, S. Nakayama, H. Akimune, and S. Miyamoto, Phys. Rev. C 95, 044307 (2017).

  22. S. Bacca and S. Pastore, J. Phys. G: Nucl. Part. Phys. 41, 123002 (2014).

  23. B. K. Agarwal, S. Shlomo, and V. Kim Au, Phys. Rev. C 72, 014310 (2005).

  24. J. Ahrens et al., Nucl. Phys. A 251, 479 (1975).

    Article  ADS  Google Scholar 

  25. A. Veyssière et al., Nucl. Phys. A 227, 513 (1974).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjeet Dalal.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beniwal, R., Dalal, R. SRC Based Model for the Photonuclear Reactions on \({N=Z}\) Light Nuclei. Phys. Atom. Nuclei 86, 962–970 (2023). https://doi.org/10.1134/S1063778824010125

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778824010125

Navigation