Skip to main content
Log in

Identical Bands Around the Isobaric Rare-Earth Even–Even Nuclei with the Mass Number of \({A=164}\)

  • NUCLEI/Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Eight pairs of rare-earth normally—deformed (ND) nuclei around the isobaric nuclei with \(A=164\) and identical values of \(F\)-spin, \(\pm F_{0}\) and \(N_{p}N_{n}\) (\(N_{p}\) and \(N_{n}\) are the number of valence protons and valence neutrons, respectively) have been studied. These pairs of identical bands (IB’s) cover 16 mass units and are classified as (i) 3 pairs of nuclei separated by \((2p,2n)\): (\({}^{162}\)Yb–\({}^{166}\)Hf), (\({}^{162}\)Er–\({}^{166}\)Yb), (\({}^{162}\)Dy–\({}^{166}\)Er), (ii) 2 pairs of nuclei separated by \((4p,4n)\): (\({}^{160}\)Dy–\({}^{168}\)Yb), (\({}^{160}\)Er–\({}^{168}\)Hf), (iii) 2 pairs of nuclei separated by \((6p,6n)\): (\({}^{158}\)Er–\({}^{170}\)W), (\({}^{158}\)Dy–\({}^{170}\)Hf) and (iv) one pair of nuclei separated by \((8p,8n)\): (\({}^{156}\)Dy–\({}^{172}\)W). We suggested a theoretical collective rotational formula containing three parameters (CRF3) as an extended version of Bohr–Mottelson model to calculate the ground state positive parity excitation energies. Also, the \(sd\)-version of the interacting boson model (IBM) has been used to describe the nuclear shapes by using the intrinsic coherent state. The optimized model parameters for each nucleus are adjusted by using a simulation search program to minimize the root mean square deviation between the theoretical calculated and experimental excitation energies. The best adopted model parameters of the CRF3 are used to calculate the rotational frequencies \(\hbar\omega\), the kinematic \(J^{(1)}\) and dynamic \(J^{(2)}\) moments of inertia and the evolution of \(J^{(1)}\) and \(J^{(2)}\) with increasing \(\hbar\omega\) are systematically analyzed. A smooth gradual increase in both moments of inertia was seen. The calculated results agree excellently with the experimental ones which give strong support to the suggested CRF3. The adopted IBM parameters are used to calculate the potential energy surfaces (PES’s) which describe the nuclear deformation. The PES’s for our nuclei show two wells corresponding to prolate and oblate sides which indicate that these nuclei are deformed and have rotational behaviors. The correlation quantities which identify the IB’s are extracted. It is found that the nuclei having \(N_{p}N_{n}/\triangle\), where \(\triangle\) is the average pairing gap, exhibit identical excitation energies and energy ratios in their ground state

rotational bands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

REFERENCES

  1. T. Byrski, F. A. Beck, D. Curien, C. Schuck, P. Fallon, A. Alderson, I. Ali, M. A. Bentley, A. M. Bruce, P. D. Forsyth, D. Howe, J. W. Roberts, J. F. Sharpey-Schafer, G. Smith, and P. J. Twin, Phys. Rev. Lett. 64, 1650 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. B. Haas, D. Ward, H. R. Andrews, G. C. Ball, T. E. Drake, S. Flibotte, A. Galindo-Uribarri, V. P. Janzen, J. K. Johansson, H. Kluge, J. Kuehner, A. Omar, S. Pilotte, D. Prevost, J. Rodriguez, D. C. Radford, et al., Phys. Rev. C 42, R1817 (1990).

    Article  ADS  CAS  Google Scholar 

  3. C. Baktash, B. Haas, and W. Nazarewicz, Ann. Rev. Nucl. Part. Sci. 45, 485 (1995).

    Article  ADS  CAS  Google Scholar 

  4. F. S. Stephens, M. A. Deleplanque, J. E. Draper, R. M. Diamond, C. W. Beausang, W. Korten, W. H. Kelly, F. Azaiez, J. A. Becker, E. A. Henry, N. Roy, M. J. Brinkman, J. A. Cizewski, S. W. Yates, and A. Kuhnert, Phys. Rev. Lett. 64, 2623 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. F. S. Stephens, M. A. Deleplanque, J. E. Draper, R. M. Diamond, A. O. Macchiavelli, C. W. Beausang, W. Korten, W. H. Kelly, F. Azaiez, J. A. Becker, E. A. Henry, S. W. Yates, M. J. Brinkman, A. Kuhnert, and J. A. Cizewski, Phys. Rev. Lett. 65, 301 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. I. Ragnarsson, Phys. Lett. B 264, 5 (1991).

    Article  ADS  CAS  Google Scholar 

  7. W. Nazarewicz, P. J. Twin, P. Fallon, and J. D. Garrett, Phys. Rev. Lett. 64, 1654 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Z. Szymánski and W. Nazarewicz, Phys. Lett. B 433, 229 (1998).

    Article  ADS  Google Scholar 

  9. C. Rigollet, P. Bonche, H. Flocard, and P.-H. Heenen, Phys. Rev. C 59, 3120 (1999).

    Article  ADS  CAS  Google Scholar 

  10. J.-Y. Zeng, S.-X. Liu, Y. A. Lei, and L. Yu, Phys. Rev. C 63, 024305 (2001).

  11. S.-X. Liu, J.-Y. Zeng, and E.-G. Zhao, Phys. Rev. C 66, 024320 (2002).

  12. A. Khalaf, K. Abdelmageed, and M. Sirag, Turk. J. Phys. 39, 178 (2015).

    Article  CAS  Google Scholar 

  13. A. Gelberg, P. von Brentano, and R. F. Casten, J. Phys. G: Nucl. Part. Phys. 16, L143 (1990).

    Article  ADS  CAS  Google Scholar 

  14. P. Fallon, W. Nazarewicz, M. A. Riley, and R. Wyss, Phys. Lett. B 276, 427 (1992).

    Article  ADS  CAS  Google Scholar 

  15. Z. Szymanski, Phys. Rev. C 51, R1090 (1995).

    Article  ADS  CAS  Google Scholar 

  16. D. S. Haslip, N. Kintz, S. Flibotte, R. A. E. Austin, G. De France, M. Devlin, C. Finck, A. Galindo-Uribarri, G. Gervais, D. R. LaFosse, T. J. Lampman, I. Y. Lee, F. Lerma, A. O. Macchiavelli, R. W. MacLeod, S. M. Mullins, J. M. Nieminen, et al., Phys. Rev. C 57, 2196 (1998).

    Article  ADS  CAS  Google Scholar 

  17. L. B. Karlsson, I. Ragnarsson, and S. Åberg, Phys. Lett. B 416, 16 (1998).

    Article  ADS  CAS  Google Scholar 

  18. X. T. He, S. X. Liu, S. Y. Yu, J. Y. Zeng, and E. G. Zhao, Eur. Phys. J. A 23, 217 (2005).

    Article  ADS  CAS  Google Scholar 

  19. R. D. Amado, R. Bijker, F. Cannata, and J. P. Dedonder, Phys. Rev. Lett. 67, 2777 (1991).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  20. Y.-X. Liu and D.-F. Gao, Phys. Rev. C 63, 044317 (2001).

  21. I. Ahmad, M. P. Carpenter, R. R. Chasman, R. V. F. Janssens, and T. L. Khoo, Phys. Rev. C 44, 1204 (1991).

    Article  ADS  CAS  Google Scholar 

  22. C. Baktash, J. D. Garrett, D. F. Winchell, and A. Smith, Phys. Rev. Lett. 69, 1500 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. C. Baktash, D. F. Winchell, J. D. Garrett, and A. Smith, Nucl. Phys. A 557, 145 (1993).

    Article  ADS  Google Scholar 

  24. R. F. Casten, N. V. Zamfir, P. Von Brentano, and W.-T. Chou, Phys. Rev. C 45, R1413 (1992).

    Article  ADS  CAS  Google Scholar 

  25. M. Saha and S. Sen, Phys. Rev. C 46, R1587 (1992).

    Article  ADS  CAS  Google Scholar 

  26. M. (Saha) Sarkar and S. Sen, Phys. Rev. C 50, 2794 (1994).

    Article  ADS  Google Scholar 

  27. J.-Y. Zhang, R. F. Casten, W.-T. Chou, D. S. Brenner, N. V. Zamfir, and P. Von Brentano, Phys. Rev. Lett. 69, 1160 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. E. C. Halbert and W. Nazarewicz, Phys. Rev. C 48, R2158 (1993).

    Article  ADS  CAS  Google Scholar 

  29. A. M. Khalaf, M. D. Okasha, and K. M. Abdelbased, Prog. Phys. 13, 50 (2017).

    ADS  CAS  Google Scholar 

  30. M. W. Guidry, M. R. Strayer, C.-L. Wu, and D. H. Feng, Phys. Rev. C 48, 1739 (1993).

    Article  ADS  CAS  Google Scholar 

  31. A. Bohr and B. R. Mottelson, Nuclear Structure, Vol. II: Nuclear Deformations (W. A. Benjamin, New York, 1975).

  32. A. M. Khalaf, Ind. J. Appl. Phys. 24, 469 (1986).

    CAS  Google Scholar 

  33. M. A. J. Mariscotti, Phys. Rev. 178, 1864 (1969).

    Article  ADS  CAS  Google Scholar 

  34. G. Scharff-Goldhaber, C. B. Dover, and A. L. Goodman, Ann. Rev. Nucl. Sci. 26, 239 (1976).

    Article  ADS  CAS  Google Scholar 

  35. P. von Brentano, N. V. Zamfir, R. F. Casten, W. G. Rellergert, and E. A. McCutchan, Phys. Rev. C 69, 044314 (2004).

  36. F. Iachello and A. Arima, The Interacting Boson Model, Cambridge Monographs on Mathematical Physics (Cambridge Univ. Press, Cambridge, 1987).

    Book  Google Scholar 

  37. T. Otsuka, A. Arima, F. Iachello, and I. Talmi, Phys. Lett. B 76, 139 (1978).

    Article  ADS  Google Scholar 

  38. R. F. Casten, Phys. Rev. Lett. 54, 1991 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. R. F. Casten and N. V. Zamfir, J. Phys. G: Nucl. Part. Phys. 22, 1521 (1996).

    Article  ADS  CAS  Google Scholar 

  40. R. F. Casten, Phys. Lett. B 152, 145 (1985).

    Article  ADS  Google Scholar 

  41. R. F. Casten, D. S. Brenner, and P. E. Haustein, Phys. Rev. Lett. 58, 658 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. P. Holmberg and P. O. Lipas, Nucl. Phys. A 117, 552 (1968).

    Article  ADS  CAS  Google Scholar 

  43. T. A. Green and M. E. Rose, Phys. Rev. 110, 105 (1958).

    Article  ADS  CAS  Google Scholar 

  44. L. Grodzins, Phys. Lett.2, 88 (1962).

    Article  ADS  CAS  Google Scholar 

  45. A. Partensky and C. Quesne, Ann. Phys. 136, 340 (1981).

    Article  ADS  CAS  Google Scholar 

  46. A. E. L. Dieperink, O. Scholten, and F. Iachello, Phys. Rev. Lett. 44, 1747 (1980).

    Article  ADS  CAS  Google Scholar 

  47. J. N. Ginocchio, Nucl. Phys. A 376, 438 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  48. Y. Alhassid and N. Whelan, Phys. Rev. Lett. 67, 816 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. D. D. Warner and R. F. Casten, Phys. Rev. C 28, 1798 (1983).

    Article  ADS  CAS  Google Scholar 

  50. Evaluated Nuclear Structure Data File National Nuclear Data Center. https://www.nndc.bnl.gov/.

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Abdelsalam.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelsalam, M.A., Ghanim, H.A., Kotb, M. et al. Identical Bands Around the Isobaric Rare-Earth Even–Even Nuclei with the Mass Number of \({A=164}\). Phys. Atom. Nuclei 86, 946–961 (2023). https://doi.org/10.1134/S1063778824010010

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778824010010

Navigation