Skip to main content
Log in

On the Possibility of Using an Electrochemical Hydrogen Pump in a Fuel Cycle of Fusion Devices

  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The fuel cycle (FC) of a fusion reactor includes the following operations with hydrogen-containing gas mixtures: tokamak pumping, hydrogen isotope extraction from tokamak exhaust, tritium separation from hydrogen-containing impurities, separation of hydrogen isotopes, fuel injection into plasma, processing of tritium-containing radioactive waste. Processing and purification of fuel is a delicate and multistage process, the increased requirements for which are justified by considerations of radiation safety and economic efficiency. Fusion devices and hence FCs fusion differ significantly in scale, functional features, and amount and flux of tritium in systems, which makes it practically impossible to use the same technologies in different installations. This leads to the need to consider the possibility of using new technologies in FC systems and to find and develop systems based on efficient technologies for extracting hydrogen isotopes from gas mixtures. One such technology is the electrochemical hydrogen pump (EHP). There are three types of EHP based on solid oxide electrolyte (SOE), phosphate electrolyte (PHE) and solid polymer electrolyte (SPE). The article considers the possibility of using EHP in various FC systems for selective pumping of the fuel mixture, purification of the fuel mixture from impurities, and tritium separation from the breeder gas, as well as for other purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. M. Keilhacker et al., Nucl. Fusion 39, 209 (1999).

    Article  ADS  Google Scholar 

  2. L. Horton et al., Fusion Eng. Des. 109–111, 925 (2016).

    Article  Google Scholar 

  3. M. G. Bell, in Magnetic Fusion Energy: From Experiments to Power Plants (Woodhead, London, 2016), p. 119.

  4. M. Tanaka, N. Suzuki, and H. Kato, J. Nucl. Sci. Technol. 56, 1297 (2020).

    Article  Google Scholar 

  5. J. Li and Y. Wan, Engineering 7, 1523 (2021).

    Article  Google Scholar 

  6. P. P. Khvostenko et al., Vopr. At. Nauki Tekhn., Ser. Termoyad. Sintez 42 (1), 15 (2019).

    Google Scholar 

  7. Y. Takeiri, Atoms 6 (4), 3 (2018).

    Article  Google Scholar 

  8. M. Endler et al., Fusion Eng. Des. 167, 112381 (2021).

  9. B. Bigot, Fusion Eng. Des. 164, 112207 (2021).

  10. B. Bigot, Fusion Eng. Des. 146, 124 (2019).

    Article  Google Scholar 

  11. J. L. Anderson et al., Fusion Technol. 26 (3P2), 427 (1994).

  12. J. L. Anderson et al., Fusion Eng. Des. 28, 209 (1995).

    Article  Google Scholar 

  13. P. Sichta et al., in Proceedings of the 16th International Symposium on Fusion Engineering (1995), Vol. 2, p. 581.

  14. C. A. Gentile et al., in Proceedings of the 17th IEEE/NPSS Symposium on Fusion Engineering (1997), Vol. 1, p. 283.

  15. I. R. Cristescu, I. Cristescu, L. Doerr, M. Glugla, and D. Murdoch, Nucl. Fusion 47 (7) (2007).

  16. X. Wang, G. Ran, H. Wang, C. Xiao, G. Zhang, and C. Chen, J. Fusion Energy 38, 125 (2019).

    Article  Google Scholar 

  17. P. Pasierb and M. Rekas, Int. J. Electrochem. 2011 (1), 1 (2011).

    Article  Google Scholar 

  18. Y. Kawamura, T. Arita, K. Isobe, W. Shu, and T. Yamanishi, Fusion Eng. Des. 83, 625 (2008).

    Article  Google Scholar 

  19. M. Tanaka, K. Katahira, Y. Asakura, and T. Ohshima, Solid State Ionics 181, 215 (2010).

    Article  Google Scholar 

  20. M. Tanaka, Y. Asakura, and T. Uda, Fusion Sci. Technol. 54, 479 (2008).

    Article  ADS  Google Scholar 

  21. M. Tanaka, Fusion Eng. Des. 87, 1065 (2012).

    Article  Google Scholar 

  22. M. Rhandi, M. Trégaro, F. Druart, J. Deseure, and M. Chatenet, Chin. J. Catal. 41, 756 (2020).

    Article  Google Scholar 

  23. S. Sircar and T. C. Golden, Sep. Sci. Technol. 35, 667 (2000).

    Article  Google Scholar 

  24. R. Agrawal, S. R. Auvil, Di S. P. Martino, J. S. Choe, and J. A. Hopkins, Gas Sep. Purif. 2, 9 (1988).

    Article  Google Scholar 

  25. M. Aasadnia, M. Mehrpooya, and B. Ghorbani, J. Clean. Prod. 278, 123872 (2021).

  26. R. Lässer et al., Fusion Eng. Des. 47, 173 (1999).

    Article  Google Scholar 

  27. Y. Asakura et al., J. Nucl. Sci. Technol. 41, 863 (2004).

    Article  Google Scholar 

  28. M. Tanaka, N. Suzuki, H. Kato, and M. Yokosawa, Fusion Eng. Des. 160, 111980 (2020).

  29. M. Tanaka, Fusion Eng. Des. 136, 141 (2018).

    Article  Google Scholar 

  30. B. Bornschein, M. Glugla, K. Günther, T. L. Le, K. H. Simon, and S. Welte, Fusion Sci. Technol. 48, 11 (2005).

    Article  ADS  Google Scholar 

  31. S. Tosti and A. Pozio, Membranes (Basel) 8 (96), 96 (2018).

    Article  Google Scholar 

  32. M. Glugla, A. Perevezentsev, D. Niyongabo, R. D. Penzhorn, A. Bell, and P. Herrmann, Fusion Eng. Des. 49–50, 817 (2000).

    Article  Google Scholar 

  33. J. Wilson, J. Becnel, D. Demange, and B. Rogers, Fusion Sci. Technol. 75, 794 (2019).

    Article  ADS  Google Scholar 

  34. J. L. Hemmerich, R. Lässer, and T. Winkel, Fusion Eng. Des. 19, 161 (1992).

    Article  Google Scholar 

  35. A. Perevezentsev et al., Fusion Eng. Des. 47, 355 (1999).

    Article  Google Scholar 

  36. K. M. Song et al., Fusion Eng. Des. 83, 1380 (2008).

    Article  Google Scholar 

  37. S. Beloglazov, M. Glugla, E. Fanghänel, A. Perevezentsev, and R. Wagner, Fusion Sci. Technol. 54, 22 (2008).

    Article  ADS  Google Scholar 

  38. A. N. Golubkov and A. A. Yukhimchuk, Hyperfine Interact. 138, 403 (2001).

    Article  ADS  Google Scholar 

  39. A. A. Yukhimchuk et al., Vopr. At. Nauki Tekh., Ser. Termoyad. Sintez 36 (3), 26 (2013).

    Google Scholar 

  40. L. Vermaak, H. W. J. P. Neomagus, and D. G. Bessarabov, Membranes (Basel) 11 (2), 1 (2021).

    Google Scholar 

  41. M. Trégaro, M. Rhandi, F. Druart, J. Deseure, and M. Chatenet, Chin. J. Catal. 41, 770 (2020).

    Article  Google Scholar 

  42. K. A. Perry, G. A. Eisman, and B. C. Benicewicz, J. Power Sources 177, 478 (2008).

    Article  ADS  Google Scholar 

  43. M. Thomassen, E. Sheridan, and J. Kvello, J. Nature Gas Sci. Eng. 2, 229 (2010).

    Article  Google Scholar 

  44. S. J. Kim et al., Int. J. Hydrogen Energy 38, 14816 (2013).

    Article  Google Scholar 

  45. H. Iwahara, Y. Asakura, K. Katahira, and M. Tanaka, Solid State Ionics 168, 299 (2004).

    Article  Google Scholar 

  46. Q. Li, R. He, J. O. Jensen, and N. J. Bjerrum, Chem. Mater. 15, 4896 (2003).

    Article  Google Scholar 

  47. S. S. Ivanchev and S. V. Myakin, Russ. Chem. Rev. 79, 101 (2010).

    Article  ADS  Google Scholar 

  48. S. S. Ivanchev and S. V. Myakin, Russ. Chem. Rev. 79, 101 (2010).

    Article  ADS  Google Scholar 

  49. M. T. Nguyen, S. A. Grigoriev, A. A. Kalinnikov, A. A. Filippov, P. Millet, and V. N. Fateev, J. Appl. Electrochem. 41, 1033 (2011).

    Article  Google Scholar 

  50. S. A. Grigoriev, I. G. Shtatniy, P. Millet, V. I. Porembsky, and V. N. Fateev, Int. J. Hydrogen Energy 36, 4148 (2011).

    Article  Google Scholar 

  51. C. Day and D. Murdoch, J. Phys.: Conf. Ser. 114 (1) (2008).

  52. A. A. Yukhimchuk et al., Fusion Sci. Technol. 41, 929 (2002).

    Article  ADS  Google Scholar 

  53. A. A. Skovoroda et al., J. Nucl. Mater. 306, 232 (2002).

    Article  ADS  Google Scholar 

  54. R. K. Musyaev et al., Fusion Sci. Technol. 54, 523 (2008).

    Article  ADS  Google Scholar 

  55. V. I. Pistunovich et al., Fusion Eng. Des. 28, 336 (1995).

    Article  Google Scholar 

  56. C. R. Decaux, R. Ngameni, D. Solas, S. Grigoriev, and P. Millet, Int. J. Hydrogen Energy 35, 4883 (2010).

    Article  Google Scholar 

  57. M. Glugla et al., Fusion Eng. Des. 82, 472 (2007).

    Article  Google Scholar 

  58. B. Bornschein et al., Fusion Eng. Des. 69 (1-4 Spec.), 51 (2003).

  59. M. Tanaka, T. Sugiyama, T. Ohshima, and I. Yamamoto, Fusion Sci. Technol. 60, 1391 (2011).

    Article  ADS  Google Scholar 

  60. M. Tanaka, K. Katahira, Y. Asakura, T. Uda, H. Iwahara, and I. Yamamoto, J. Nucl. Sci. Technol. 41, 61 (2004).

    Article  Google Scholar 

  61. M. Nishikawa, T. Kinjyo, and Y. Nishida, J. Nucl. Mater. 325, 87 (2004).

    Article  ADS  Google Scholar 

  62. J. Wilson, J. Becnel, D. Demange, and B. Rogers, Fusion Sci. Technol. 75, 802 (2019).

    Article  ADS  Google Scholar 

  63. I. Cristescu, F. Priester, D. Rapisarda, A. Santucci, and M. Utili, Fusion Sci. Technol. 76, 446 (2020).

    Article  ADS  Google Scholar 

  64. I. Cristescu and M. Draghia, Fusion Eng. Des. 158, 111558 (2020).

  65. T. Kakuta, S. Konishi, Y. Kawamura, M. Nishi, and T. Suzuki, Fusion Technol. 39, 1083 (2001).

    Article  ADS  Google Scholar 

  66. T. Kakuta et al., Fusion Sci. Technol. 41, 1069 (2002).

    Article  ADS  Google Scholar 

  67. Y. Kawamura, K. Isobe, and T. Yamanishi, Fusion Eng. Des. 82, 113 (2007).

    Article  Google Scholar 

  68. M. Kato et al., Fusion Sci. Technol. 41, 859 (2002).

    Article  ADS  Google Scholar 

  69. S. Konishi et al., in Proceedings of the 31st Symposium on Fusion Technology SOFT2020 (2020), p. 612 PS.

  70. G. Gebel, Polymer (Guildf) 41, 5829 (2000).

    Article  Google Scholar 

  71. H. Teng, Appl. Sci. 2, 496 (2012).

    Article  Google Scholar 

  72. N. H. Jalani, K. Dunn, and R. Datta, Electrochim. Acta 51, 553 (2005).

    Article  Google Scholar 

  73. V. di Noto, R. Gliubizzi, E. Negro, M. Vittadello, and G. Pace, Electrochim. Acta 53, 1618 (2007).

    Article  Google Scholar 

  74. W. K. Chao, C. M. Lee, D. C. Tsai, C. C. Chou, K. L. Hsueh, and F. S. Shieu, J. Power Sources 185, 136 (2008).

    Article  ADS  Google Scholar 

  75. M. S. Kang, Y. J. Choi, H. J. Lee, and S. H. Moon, J. Colloid Interface Sci. 273, 523 (2004).

    Article  ADS  Google Scholar 

  76. F. Chen, B. Mecheri, A. D’Epifanio, E. Traversa, and S. Licoccia, Fuel Cells 10, 790 (2010).

    Article  Google Scholar 

  77. J. Xie, D. L. Wood, K. L. More, P. Atanassov, and R. L. Borup, J. Electrochem. Soc. 152, A1011 (2005).

    Article  Google Scholar 

  78. H. Tamura, A. Tanaka, K.-Y. Mita, and R. Furuichi, J. Colloid Interface Sci. 209, 225 (1999).

    Article  ADS  Google Scholar 

  79. G. Alberti et al., Electrochim. Acta 52, 8125 (2007).

    Article  Google Scholar 

  80. A. N. Perevezentsev and M. B. Rozenkevich, Tritium Technology for Fusion Reactor (Intellekt, Dolgoprudnyi, 2018) [in Russian].

  81. C. S. Tsao, H. L. Chang, U. S. Jeng, J. M. Lin, and T. L. Lin, Polymer (Guildf) 46, 8430 (2005).

    Article  Google Scholar 

  82. Y. Akiyama, H. Sodaye, Y. Shibahara, Y. Honda, S. Tagawa, and S. Nishijima, Polym. Degrad. Stab. 95, 1 (2010).

    Article  Google Scholar 

  83. Y. Akiyama, H. Sodaye, Y. Shibahara, Y. Honda, S. Tagawa, and S. Nishijima, J. Power Sources 195, 5915 (2010).

    Article  ADS  Google Scholar 

  84. J. Roth, J. Eller, and F. N. Büchi, J. Electrochem. Soc. 159, F449 (2012).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 22-29-01367.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. V. Ivanov.

Ethics declarations

The authors of this work declare that they have no conflict of interest.

Additional information

Translated by Sh. Galyaltdinov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, B.V., Ivanova, N.A., Mensharapov, R.M. et al. On the Possibility of Using an Electrochemical Hydrogen Pump in a Fuel Cycle of Fusion Devices. Phys. Atom. Nuclei 86 (Suppl 1), S64–S74 (2023). https://doi.org/10.1134/S1063778823130045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778823130045

Keywords:

Navigation