Skip to main content
Log in

Study of Sorption Properties of Intermetallic Compounds ZrCrFe and ZrCo to Assess Its Applicability in the Fuel Cycle Systems of Fusion Facilities

  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The usefulness of hydride-forming materials in hydrogen isotope storage systems and the possibility of their usage in other systems of the fusion fuel cycle (for example, in a hydrogen isotope separation system or for analytical equipment) determine the relevance of studies of the properties of metals and intermetallic compounds (IMCs). The disadvantages of uranium, which is currently used for the hydrogen storage, and palladium, which is used for hydrogen isotopes separation, lead to the need to search for alternatives. The paper presents the results of a study of the interaction of hydrogen isotopes (protium and deuterium) with the IMC ZrCrFe. The sorption isotherms obtained by the Sieverts volumetric method in the temperature range of 273–323 K were used to estimate the parameters practically significant for the storage and separation of hydrogen isotopes: sorption capacity, equilibrium pressure, separation coefficients, thermodynamic parameters of the hydrogenation reaction. To confirm the reliability of the experimental and computational methods, the properties of the well-studied ZrCo material were measured and the results obtained were compared with the published data. The studied sorption properties of the ZrCrFe intermetallic compound demonstrate the applicability of this material for the separation of hydrogen isotopes, since it is characterized by a significant separation coefficient (αHD = 1.22 ± 0.06 at a temperature of 298 K), low stability of hydride and deuteride, and high sorption capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. R. Lässer, S. Grünhagen, and Y. Kawamura, Fusion Eng. Des. 69, 813 (2003).

    Article  Google Scholar 

  2. A. N. Perevezentsev and M. B. Rozenkevich, Tritium Technology for Fusion Reactor (Intellekt, Dolgoprudnyi, 2018) [in Russian].

  3. H. Chung et al., Fusion Eng. Des. 84, 599 (2009).

    Article  Google Scholar 

  4. K. M. Song et al., Fusion Eng. Des. 83, 1380 (2008).

    Article  Google Scholar 

  5. S. H. Yun et al., Fusion Eng. Des. 89, 1495 (2014).

    Article  Google Scholar 

  6. D. Karpov and V. Litunovskii, Hydrogen Energy: Storing Hydrogen in a Bound State (Palmarium Academic, Moscow, 2018).

    Google Scholar 

  7. A. N. Perevezentsev et al., Fiz. Elem. Chastits At. Yadra 19, 1386 (1988).

    Google Scholar 

  8. N. Bekris and M. Sirch, Fusion Sci. Technol. 62, 50 (2012).

    Article  ADS  Google Scholar 

  9. E. P. Magomedbekov, A. A. Raitman, and M. B. Rozenkevich, Separation of Isotopes of Nutrients in Two-Phase Systems (IzdAT, Moscow, 2003) [in Russian].

  10. B. M. Andreev, E. P. Magomedbekov, and G. H. Sicking, Interaction of Hydrogen Isotopes with Transition Metals and Intermetallic Compounds (Springer, Heidelberg, 1996).

    Book  Google Scholar 

  11. R. Lússer et al., Fusion Eng. Des. 47, 301 (1999).

    Article  Google Scholar 

  12. A. S. Horen and M. W. Lee, Fusion Technol. 21, 282 (1992).

    Article  ADS  Google Scholar 

  13. A. V. Buchirin and A. N. Golubkov, Vopr. At. Nauki Tekh., Ser. Termoyader. Sintez, No. 3, 61 (2009).

  14. M. Glugla et al., Fusion Eng. Des. 82 (5–14), 472 (2007).

  15. L. K. Heung, H. T. Sessions, X. Xiao, and H. L. Mentzer, Fusion Sci. Technol. 56, 1471 (2009).

    Article  ADS  Google Scholar 

  16. L. K. Heung, H. T. Sessions, and X. Xiao, Fusion Sci. Technol. 60, 1331 (2011).

    Article  ADS  Google Scholar 

  17. C. Neugebauer, Y. Hörstensmeyer, and C. Day, Fusion Sci. Technol. 76, 215 (2020).

    Article  ADS  Google Scholar 

  18. R. Checchetto, G. Trettel, and A. Miotello, Meas. Sci. Technol. 15, 127 (2004).

    Article  ADS  Google Scholar 

  19. W. T. Shmayda, A. G. Heics, and N. P. Kherani, J. Less-Common Met. 162, 117 (1990).

    Article  Google Scholar 

  20. J. A. H. Coaquira, H. R. Rechenberg, and J. Mestnik Filho, Hyperfine Interact. 126, 205 (2000).

    Article  ADS  Google Scholar 

  21. L. Y. Zhang, W. E. Wallace, J. Solid State Chem. 74 (1), 132 (1988).

    Article  ADS  Google Scholar 

  22. N. Bekris, U. Bessere, M. Sirch, and R. D. Penzhorn, Fusion Eng. Des. 49–50, 781 (2000).

    Article  Google Scholar 

  23. M. Devillers, M. Sirch, S. Bredendiek-Kämper, and R. D. Penzhorn, Chem. Mater. 2, 255 (1990).

    Article  Google Scholar 

  24. B. M. Andreev, Ya. D. Zel’venskii, and S. G. Katal’nikov, Heavy Isotopes of Hydrogen in Nuclear Technology (IzdAT, Moscow, 2000) [in Russian].

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Anfimova.

Ethics declarations

The authors of this work declare that they have no conflict of interest.

Additional information

Translated by Sh. Galyaltdinov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, B.V., Anfimova, T.A. Study of Sorption Properties of Intermetallic Compounds ZrCrFe and ZrCo to Assess Its Applicability in the Fuel Cycle Systems of Fusion Facilities. Phys. Atom. Nuclei 86 (Suppl 1), S57–S63 (2023). https://doi.org/10.1134/S1063778823130033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778823130033

Keywords:

Navigation