Skip to main content
Log in

Properties of Self-di-Interstitials in Copper: Molecular Dynamics Study

  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The properties of self di-interstitials—clusters formed by two self-interstitial atoms—in fcc copper crystal have been studied by the molecular statics and molecular dynamics methods. The formation energy (5.26 eV) and binding energy (0.83 eV) of the most energetically favorable configuration of a di-interstitial have been determined. The temperature dependences of the di-interstitial diffusion characteristics (diffusivity, the tracer correlation factor, the mean distance traveled between changes in migration direction, the frequency of migration direction changes, etc.) have been calculated for the temperature range of 300–1000 K; the temperature dependence of the di-interstitial dissociation lifetime has been calculated for the temperature range of 900–1100 K. Analytical dependences describing the calculated data have been proposed. The activation energy of di-interstitials dissociation is determined: 0.88 eV. For typical values of radiation defect sink strengths in radiation resistant materials (1015–1016 m–2), temperature limits below which the overwhelming amount of di-interstitials are absorbed by the sinks before their dissociation are determined: 630–740 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. M. Merola, D. Loesser, A. Martin, P. Chappuis, R. Mitteau, V. Komarov, R. A. Pitts, S. Gicquel, V. Barabash, L. Giancarli, J. Palmer, M. Nakahira, A. Loarte, D. Campbell, R. Eaton, et al., Fusion Eng. Des. 85, 2312 (2010). https://doi.org/10.1016/j.fusengdes.2010.09.013

    Article  Google Scholar 

  2. P. Norajitra, R. Giniyatulin, T. Ihli, G. Janeschitz, W. Krauss, R. Kruessmann, V. Kuznetsov, I. Mazul, V. Widak, I. Ovchinnikov, R. Ruprecht, and B. Zeep, Fusion Eng. Des. 82, 2740 (2007). https://doi.org/10.1016/j.fusengdes.2007.05.027

    Article  Google Scholar 

  3. Yu. S. Shpanskiy and the DEMO-FNS Project Team, Nucl. Fusion 59, 076014 (2019). https://doi.org/10.1088/1741-4326/ab14a8

  4. D. Stork, P. Agostini, J. L. Boutard, D. Buckthorpe, E. Diegele, S. L. Dudarev, C. English, G. Federici, M. R. Gilbert, S. Gonzalez, A. Ibarra, Ch. Linsmeier, A. Li Puma, G. Marbach, P. F. Morris, et al., J. Nucl. Mater. 455, 277 (2014). https://doi.org/10.1016/j.jnucmat.2014.06.014

    Article  ADS  Google Scholar 

  5. Y. Mishin, M. J. Mehl, D. A. Papaconstantopoulos, A. F. Voter, and J. D. Kress, Phys. Rev. B 63, 224106 (2001). https://doi.org/10.1103/PhysRevB.63.224106

  6. M. S. Daw and M. I. Baskes, Phys. Rev. B 29, 6443 (1984). https://doi.org/10.1103/PhysRevB.29.6443

    Article  ADS  Google Scholar 

  7. M. I. Mendelev, M. J. Kramer, C. A. Becker, and M. Asta, Philos. Mag. 88, 1723 (2008). https://doi.org/10.1080/14786430802206482

    Article  ADS  Google Scholar 

  8. M. I. Mendelev and A. H. King, Philos. Mag. 93, 1268 (2013). https://doi.org/10.1080/14786435.2012.747012

    Article  ADS  Google Scholar 

  9. A. B. Sivak, D. N. Demidov, and P. A. Sivak, Vopr. At. Nauki Tekh., Ser. Termoyad. Sintez 44 (1), 106 (2021). https://doi.org/10.21517/0202-3822-2021-44-1-106-118

    Article  Google Scholar 

  10. D. J. Bacon, Yu. N. Osetsky, R. Stoller, and R. E. Voskoboinikov, J. Nucl. Mater. 323, 152 (2003). https://doi.org/10.1016/j.jnucmat.2003.08.002

    Article  ADS  Google Scholar 

  11. S. Miyashiro, S. Fujita, and T. Okita, J. Nucl. Mater. 415, 1 (2011). https://doi.org/10.1016/j.jnucmat.2011.03.056

    Article  ADS  Google Scholar 

  12. Y. Yang, T. Okita, M. Itakura, T. Kawabata, and K. Suzuki, Nucl. Mater. Energy 9, 587 (2016). https://doi.org/10.1016/j.nme.2016.07.008

    Article  Google Scholar 

  13. M. M. Li and S. J. Zinkle, in Comprehensive Nuclear Materials, 2nd ed. (2020), p. 693. https://doi.org/10.1016/B978-0-12-803581-8.11618-2

    Book  Google Scholar 

  14. I. S. Batra, G. K. Dey, U. D. Kulkarni, and S. Banerjee, J. Nucl. Mater. 299, 91 (2001). https://doi.org/10.1016/S0022-3115(01)00691-2

    Article  ADS  Google Scholar 

  15. L. Verlet, Phys. Rev. 159, 98 (1967). https://doi.org/10.1103/PhysRev.159.98

    Article  ADS  Google Scholar 

  16. M. W. Guinan, R. N. Stuart, and R. J. Borg, Phys. Rev. B 15, 699 (1977). https://doi.org/10.1103/PhysRevB.15.699

    Article  ADS  Google Scholar 

  17. Yu. N. Osetsky, Def. Dif. Forum 188–190, 71 (2001). https://doi.org/10.4028/www.scientific.net/DDF.188-190.71

  18. H. L. Heinisch, B. N. Singh, and S. I. Golubov, J. Comput. Aided Mater. Des. 6, 277 (1999). https://doi.org/10.1023/A:1008777901639

    Article  ADS  Google Scholar 

  19. L. Malerba, C. S. Becquart, and C. Domain, J. Nucl. Mater. 360, 159 (2007). https://doi.org/10.1016/j.jnucmat.2006.10.002

    Article  ADS  Google Scholar 

  20. A. B. Sivak, D. N. Demidov, and P. A. Sivak, PAS and T/TF 44, 148 (2021). https://doi.org/10.21517/0202-3822-2021-44-2-148-157

  21. D. N. Demidov, A. B. Sivak, and P. A. Sivak, Vopr. At. Nauki Tekh., Ser. Termoyad. Sintez 42 (2), 99 (2019). https://doi.org/10.21517/0202-3822-2019-42-2-99-107

    Article  Google Scholar 

  22. J. R. Manning, Diffusion Kinetics for Atoms in Crystals (D. Van Nostrand, Toronto, 1968).

    Book  Google Scholar 

  23. R. A. Johnson, Phys. Rev. 145, 423 (1966). https://doi.org/10.1103/physrev.145.423

    Article  ADS  Google Scholar 

  24. P. Benoist, J.-L. Bocquet, and P. Lafore, Acta Metall. 25, 265 (1977). https://doi.org/10.1016/0001-6160(77)90145-6

    Article  Google Scholar 

  25. S. J. Zinkle and L. L. Snead, Ann. Rev. Mat. Res. 44, 241 (2014). https://doi.org/10.1146/annurev-matsci-070813-113627

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. N. Demidov or A. B. Sivak.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by G. Dedkov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demidov, D.N., Sivak, A.B. Properties of Self-di-Interstitials in Copper: Molecular Dynamics Study. Phys. Atom. Nuclei 86 (Suppl 1), S91–S98 (2023). https://doi.org/10.1134/S106377882313001X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377882313001X

Keywords:

Navigation