Skip to main content
Log in

Tunable Fabry–Perot Microcavity Based on Boron Nitride and Rhodamine 6G

  • INTERACTION OF PLASMA, PARTICLE BEAMS, AND RADIATION WITH MATTER
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Light–matter interaction leads to excitation of molecules, which, in turn, can exchange energy with a localized electromagnetic field. This can be used for engineering of the electronic and vibrational energy levels of the molecules. This study considers the conditions for the emergence of the strong light–matter coupling regime for organic dye molecules in a tunable Fabry–Perot microcavity formed by a convex mirror and a flat reflecting surface. The sample studied was made of hexagonal boron nitride (hBN), polyvinylpyrrolidone polymer (PVP, 55 kDa), and rhodamine 6G fluorophore (R6G). Strong light–matter coupling was obtained in a sample with a low concentration of PVP. Adjustment of the optical path length in the microcavity by varying the thickness of the hBN–R6G–PVP film made it possible to obtain a high density of modes in the cavity (several tens of (λ/n)3) and, hence, to study the weak and strong light–matter coupling regimes. The results offer the possibility of studying the basic mechanisms of resonant light–matter interaction at room temperature, as well as developing new practical applications of the strong coupling effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. D. Dovzhenko, I. Martynov, P. Samokhvalov, et al., Opt. Express 28, 22705 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. E. M. Purcell, Confined Electrons and Photons: New Physics and Applications (Springer Science, New York, 1995), p. 839.

    Google Scholar 

  3. J. J. Sanchez-Mondragon, N. B. Narozhny, and J. H. Eberly, Phys. Rev. Lett. 51, 550 (1983).

    Article  ADS  CAS  Google Scholar 

  4. P. Törmä and W. L. Barnes, Rep. Prog. Phys. 78, 013901 (2014).

    Article  ADS  PubMed  Google Scholar 

  5. T. E. Li, B. Cui, J. E. Subotnik, et al., Ann. Rev. Phys. Chem. 73, 43 (2022).

    Article  ADS  CAS  Google Scholar 

  6. F. Herrera and J. Owrutsky, J. Chem. Phys. 152, 100902 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. J. Fregoni, G. Granucci, M. Persico, et al., Chemistry 6, 250 (2020).

    Article  CAS  Google Scholar 

  8. A. Mandal, T. D. Krauss, and P. Huo, J. Phys. Chem. B 124, 6321 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. T. E. Li, A. Nitzan, and J. E. Subotnik, Angew. Chem. Int. Ed. 60, 15533 (2021).

    Article  CAS  Google Scholar 

  10. B. Gu and S. Mukamel, Chem. Sci. 11, 1290 (2020).

    Article  CAS  Google Scholar 

  11. R. H. Tichauer, D. Morozov, I. Sokolovskii, et al., J. Phys. Chem. Lett. 13, 6259 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. E. W. Fischer and P. Saalfrank, J. Chem. Phys. 157, 034305 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. D. Dovzhenko, K. Mochalov, I. Vaskan, et al., Opt. Express 27, 4077 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. W. Han, X. Zhang, M. Chen, et al., Dyes Pigm. 215, 111244 (2023).

    Article  CAS  Google Scholar 

  15. P. M. Revabhai, R. K. Singhal, H. Basu, et al., J. Nanostruct. Chem. 13, 1 (2023).

    Article  CAS  Google Scholar 

  16. M. Li, G. Huang, X. Chen, et al., Nano Today 44, 101486 (2022).

    Article  CAS  Google Scholar 

  17. A. Yadav and S. S. Dindorkar, Colloids Surf., A 640, 128509 (2022).

    Article  CAS  Google Scholar 

  18. S. Schramm and D. Weiss, Adv. Heterocycl. Chem. 128, 103 (2019).

    Article  CAS  Google Scholar 

  19. Q. Zhao, W. J. Zhou, Y. H. Deng, et al., J. Phys. D: Appl. Phys. 55, 203002 (2022).

    Article  ADS  Google Scholar 

  20. I. A. Al-Ani, K. As’ham, O. Klochan, et al., J. Opt. 24, 053001 (2022).

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, grant no. 21-79-30048.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Granizo.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Granizo, E.A., Samokhvalov, P.S. & Nabiev, I.R. Tunable Fabry–Perot Microcavity Based on Boron Nitride and Rhodamine 6G. Phys. Atom. Nuclei 86, 2091–2095 (2023). https://doi.org/10.1134/S1063778823110133

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778823110133

Keywords:

Navigation