Skip to main content
Log in

Optimization of IH-type Resonators to Reduce the Peak Values of the Electric Field on the Surface

  • CHARGED PARTICLES ACCELERATORS FOR NUCLEAR TECHNOLOGIES
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Results of calculations of the electrodynamic characteristics of short five-gap accelerating cavities of the IH type are presented. The cavities are designed for a linear accelerator of protons and light ions with a charge-to-mass ratio A/Z ranging from 1 to 3.5. Developed at National Research Nuclear University MEPhI, this accelerator, which is designed as a source of charged particles with a beam energy of 7.5 MeV/nucleon, is intended for basic and applied research. The issues of the complex influence of the geometry of the drift tubes and the geometry of the drift tube support on the magnitude of the field strength on the surface of the resonators, the power losses in the walls of the resonators, and the distribution of the accelerating field on the axis are considered, taking into account the influence of the accuracy of segmenting in simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. J. A. Nolen et al., in Heavy Ion Accelerator Technology, Proceedings of the 8th International Conference, Ed. by K. W. Shepard, AIP Conf. Proc. 473, 477 (1999);

  2. Report No. ATLAS-99-1 (Argonne Natl. Labor., 1999).

  3. P. N. Ostroumov and K. W. Shepard, Phys. Rev. Spec. Top. Accel. Beams 3, 030101 (2000).

  4. Yu. K. Batygin, Nucl. Instrum. Methods Phys. Res., Sect. A 1040, 167192 (2022). https://doi.org/10.1016/j.nima.2022.167192

  5. E. S. Masunov and A. V. Samoshin, in Proceedings of the RuPAC 2008, Zvenigorod, Russia, p. 28.

  6. S. M. Polozov et al., in Proceedings of the RuPAC'21, Alushta, Russia, Sep.-Oct. 2021, p. 51. https://doi.org/10.18429/JACoW-RuPAC2021-TUB07

  7. M. Bres et al., Part. Accel. 2, 17 (1971).

    Google Scholar 

  8. T. Weis, H. Klein, and A. Schempp, IEEE Trans. Nucl. Sci. 30 (4) (1983).

  9. S. Kurennoy, L. Rybarcyk, and T. Wangler, in Proceedings of the PAC'07, Albuquerque, NM (2007), p. 3824.

  10. S. Kurennoy, J. O’Hara, and L. Rybarcykin, in Proceedings of the HB 2008, August 27, 2008.

  11. A. A. Gorchakov, M. A. Gusarova, M. V. Lalayan, et al., Phys. At. Nucl. 84, 2018 (2021).

    Article  CAS  Google Scholar 

  12. A. A. Gorchakov et al., in Proceedings of the LaPlaz-2021 Conference (NIYaU MIFI, Moscow, 2021), Part 2, p. 404.

  13. A. A. Gorchakov, M. A. Gusarova, M. V. Lalayan, et al., in Proceedings of the LaPlaz-2021 Conference (NIYaU MIFI, Moscow, 2021), Part 2, p. 410.

  14. M. M. Bulgacheva and M. A. Gusarova, in Proceedings of the LaPlaz 2022 Conference (NIYaU MIFI, Moscow, 2023), p. 315.

  15. M. M. Bulgacheva et al., Phys. At. Nucl. 85, 2061 (2022) .

    Article  CAS  Google Scholar 

  16. M. M. Bulgacheva et al., Phys. Part. Nucl. Lett. 20, 720 (2023).

    Article  Google Scholar 

  17. M. M. Bulgacheva et al., Phys. Part. Nucl. Lett. 20, 720 (2023).

    Article  Google Scholar 

  18. A. S. Sulimov, in Proceedings of the LaPlaz-2023 Conference (NIYaU MIFI, Moscow, 2023), p. 312.

  19. W. D. Kilpatrick, Rev. Sci. Instrum. 28, 824 (1957) https://doi.org/10.1063/1.1715731

    Article  ADS  CAS  Google Scholar 

  20. Th. P. Wangler, RF Linear Accelerators (Wiley-VCH, Weinheim, 2008).

    Book  Google Scholar 

  21. F. Grespan et al., ESS Report (Lund, 2013).

    Google Scholar 

  22. U. Ratzinger, in CERN Accelerator School 2000, CERN Yellow Report 2005003 (Geneva, Switzerland, 2005), p. 351.

    Google Scholar 

  23. A. Facco and V. Zvyagintsev, Phys. Rev. Spec. Top. Accel. Beams 14, 070101 (2011). https://doi.org/10.1103/PhysRevSTAB.14.070101

  24. Computer Simulation Technology. https://www.cst.com.

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Gorchakov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest

Additional information

Translated by M. Shmatikov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorchakov, A.A., Shashskov, Y.V. Optimization of IH-type Resonators to Reduce the Peak Values of the Electric Field on the Surface. Phys. Atom. Nuclei 86, 2265–2270 (2023). https://doi.org/10.1134/S1063778823100186

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778823100186

Keywords:

Navigation