Skip to main content
Log in

KIR2 Software Complex for Simulation of a Stationary and Nonstationary Particle Transport by the Monte Carlo Method

  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The KIR2 software complex for simulating neutronic stationary and nonstationary processes in reactors based on the Monte Carlo method [1, 2] is discussed. The paper presents a brief description of the software complex being developed, its key capabilities, and the features of the architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. G. Bell and S. Glasstone, Nuclear Reactor Theory (Van Nostrand Reinhold Company, 1970).

    Google Scholar 

  2. G. A. Mikhailov and I. N. Medvedev, Optimization of Weight Algorithms for Statistical Modeling (Omega Print, Novosibirsk, 2011) [in Russian].

    Google Scholar 

  3. E. A. Gomin, V. D. Davidenko, A. S. Zinchenko, I. N. Laletin, T. S. Poveshchenko, N. V. Sultanov, I. K. Kharchenko, and T. V. Tsvetkov, Report NITs KI No. 241-07/17-13 (Moscow, 2013).

  4. E. A. Gomin, V. D. Davidenko, A. S. Zinchenko, and I. K. Kharchenko, Report NITs KI No. 241-07/16-14 (Moscow, 2014).

  5. E. A. Gomin, V. D. Davidenko, A. S. Zinchenko, and I. K. Kharchenko, Report NITs KI No.241-07/21-14 (Moscow, 2014).

  6. E. A. Gomin, V. D. Davidenko, A. S. Zinchenko, and I. K. Kharchenko, Report NITs KI No. 11072-15vn-15 (Moscow, 2015).

  7. V. D. Davidenko, A. S. Zinchenko, and I. K. Khar-chenko, Vopr. At. Nauki Tekh., Ser.: Fiz. Yad. Reakt., No. 1, 11 (2015).

  8. E. A. Gomin, V. D. Davidenko, A. S. Zinchenko, and I. K. Kharchenko, Vopr. At. Nauki Tekh., Ser.: Fiz. Yad. Reakt., No. 3, 22 (2016).

  9. E. A. Gomin, V. D. Davidenko, A. S. Zinchenko, and I. K. Kharchenko, Vopr. At. Nauki Tekh., Ser.: Fiz. Yad. Reakt., No. 3, 16 (2016).

  10. E. A. Gomin, V. D. Davidenko, A. S. Zinchenko, and I. K. Kharchenko, Vopr. At. Nauki Tekh., Ser.: Fiz. Yad. Reakt., No. 5, 4 (2016).

  11. N. I. Alekseev, S. N. Bol’shagin, E. A. Gomin, S. S. Gorodkov, M. I. Gurevich, M. A. Kalugin, A. S. Kulakov, S. V. Marin, A. P. Novosel’tsev, D. S. Oleinik, A. V. Pryanichnikov, E. A. Sukhino-Khomenko, D. A. Shkarovskii, and M. S. Yudkevich, Vopr. At. Nauki Tekh., Ser.: Fiz. Yad. Reakt., No. 4, 4 (2011).

  12. M. I. Gurevich and A. V. Pryanichnikov, Phys. At. Nucl. 75, 1661 (2012).

    Article  CAS  Google Scholar 

  13. F. B. Brown, T. E. Booth, et al., Report LA-UR-03-1987 (LANL, 2003).

  14. M. Mattes and J. Keinert, Report INDC (NDS)-0470 (IAEA, 2005).

    Google Scholar 

  15. M. B. Chadwick, P. Obložinský, M. Herman, N. M. Greene, et al., Nucl. Data Sheets 107, 2931 (2006).

    Article  ADS  CAS  Google Scholar 

  16. D. A. Brown, M. B. Chadwick, R. Capote, A. C. Kahler, et al., Nucl. Data Sheets 148, 1 (2018).

    Article  ADS  CAS  Google Scholar 

  17. M. N. Nikolaev, V Mire Nauki, No. 9, 78 (2006).

  18. S. V. Zabrodskaya, A. V. Ignatyuk, V. N. Koshcheev, V. N. Manokhin, M. N. Nikolaev, and V. G. Pronyaev, Vopr. At. Nauki Tekh., Ser.: Yad. Konst., Nos. 1–2, 3 (2007).

  19. M. N. Nikolaev, ROSFOND—Russian Library of Estimated Neutron Data Files. https://www.ippe.ru/reactors/reactor-constants-datacenter/rosfond-neutrondatabase. Accessed May 31, 2021.

  20. The Joint Evaluated Fission and Fusion File (JEFF, NEA). https://www.oecd-nea.org/jcms/pl_20182/jeff. Accessed May 31, 2021.

  21. T. Nakagawa, K. Shibata, S. Chiba, T. Fukahori, Y. Nakajima, Y. Kikuchi, T. Kawano, Y. Kanda, T. Ohsawa, H. Matsunobu, M. Kawai, A. Zukeran, T. Watanabe, S. Igarasi, K. Kosako, and T. Asami, J. Nucl. Sci. Technol. 32, 1259 (1995).

    Article  CAS  Google Scholar 

  22. R. E. MacFarlane, D. W. Muir, R. M. Boicourt, and A. C. Kahler, Report No. LA-UR-12-27079 (Theor. Div. Los Alamos Natl. Labor., 2012).

  23. V. V. Sinitsa, State Registration Certificate No. 2014663246. https://www-nds.iaea.org/grucon/.

  24. V. N. Koshcheev, A. A. Peregudov, E. V. Rozhikhin, M. Yu. Semenov, and A. A. Yakunin, Vopr. At. Nauki Tekh., Ser.: Yad.-Reakt. Konst., No. 2, 68–76, (2019).

  25. N. I. Belousov, V. D. Davidenko, and V. F. Tsibul’skii, Preprint IAE-6083/4 (Inst. Nucl. Energy, Moscow, 1998).

    Google Scholar 

  26. V. D. Davidenko and V. F. Tsibulsky, in Proceedings of the International Conference on the Physics of Nuclear Science and Technology, Long Island, New York, USA, Oct. 5–8, 1998, p. 1755.

  27. V. D. Davidenko and V. F. Tsibul’skii, in Neitronika-1999, Proceedings of the Conference, Obninsk, 2000.

  28. The HDF5® Library and File Format. https://www.hdfgroup.org/solutions/hdf5/. Accessed May 31, 2021.

  29. E. A. Gomin, V. D. Davidenko, and R. V. Shirokov, Vopr. At. Nauki Tekh., Ser.: Yad.-Reakt. Konst., No. 4, 26 (2020).

  30. I. I. D’yachkov and M. V. Ioannisian, Vopr. At. Nauki Tekh., Ser.: Yad.-Reakt. Konst., No. 3, 39 (2020).

  31. V. F. Boyarinov, V. D. Davidenko, and A. V. Moryakov, Vopr. At. Nauki Tekh., Ser.: Yad.-Reakt. Konst., No. 2, 49 (2019).

  32. M. V. Ioannisian, E. A. Gomin, and V. D. Davidenko, Vopr. At. Nauki Tekh., Ser.: Fiz. Yad. Reakt., No. 1, 24 (2018).

  33. M. V. Ioannisian and V. D. Davidenko, Vopr. At. Nauki Tekh., Ser.: Yad.-Reakt. Konst., No. 1, 47 (2018).

  34. V. D. Davidenko and M. V. Ioannisian, Vopr. At. Nauki Tekh., Ser.: Yad.-Reakt. Konst., No. 1, 137 (2018).

  35. International Criticality Safety Benchmark Evaluation Project (ICSBEP). https://www.oecd-nea.org/jcms/pl_24498/internationalcriticality-safety-benchmark-evaluation-project-icsbep. Accessed October 20, 2021.

  36. M. V. Ioannisian, Vopr. At. Nauki Tekh., Ser.: Fiz. Yad. Reakt., No. 1, 10 (2018).

  37. M. Chadwick, P. Obložinský, A. Blokhin, T. Fukahori, Y. Han, Y.-O. Lee, M. Martins, S. Mughabghab, V. Varlamov, B. Yu, and J. Zhang, Tech. Rep. IAEA-TECDOC-1178 (Int. At. Energy Agency, 2000).

Download references

ACKNOWLEDGMENTS

The ideology of the software package was proposed by Evgenii Alekseevich Gomin, a senior scientific researcher at the Kurchatov Institute, who dedicated his life to research and application of the Monte Carlo method in neutronic calculations. The authors express their gratitude to E.A. Gomin for his invaluable contribution to the discussion of the directions of development, key algorithms, and methods of the KIR2 software package.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Belousov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by M. Chubarova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belousov, V.I., Gurevich, M.I., Davidenko, V.D. et al. KIR2 Software Complex for Simulation of a Stationary and Nonstationary Particle Transport by the Monte Carlo Method. Phys. Atom. Nuclei 86, 1812–1817 (2023). https://doi.org/10.1134/S106377882308001X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377882308001X

Keywords:

Navigation