Skip to main content
Log in

Measuring Impurity Concentration in Near Wall Plasma During Tests of Prototypes of the First Wall of Fusion Reactor in PLM Facility

  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

This article describes the study of low pressure helium plasma with magnetic confinement at the experimental test setup at the Moscow Power Engineering Institute: plasma linear multicusp (PLM). This facility is intended for testing refractory materials and prototypes of elements of the first wall within the framework of development of the national fusion reactor (DEMO–FNS) and the International Thermonuclear Experimental Reactor (ITER). The facility provides the conditions of plasma impact on the surface of tested sample close to the parameters and regime of operation of tokamak divertor plates. The facility is a magnetic trap with minimum magnetic field on the axis, where the plasma is created by the flow of electrons moving from the directly heated tantalum cathode toward the anode. It is possible to create stationary helium plasma in the facility and to maintain it for several hours under constant discharge parameters: helium pressure in the chamber of 10–3–10–1 Torr, discharge current of 4–30 A, plasma column diameter of 35–40 mm, voltage drop across the discharge gap of 100–200 V. The thermal load on the surface of target introduced into the axial region of plasma column has reached 5 MW/m2. Optical emission spectroscopy is the main diagnostic tool in this work. The procedure for determining atomic concentrations from the data on the relative intensities of atomic spectral lines of metallic impurities is proposed in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. ITER Physics Basis, Nucl. Fusion 39, 2561 (1999).

    Google Scholar 

  2. Y. Ueda, J. W. Coenen, G. de Temmerman, R. P. Doerner, J. Linke, V. Philipps, and E. Tsitrone, Fusion Eng. Des. 89, 901 (2014).

    Article  CAS  Google Scholar 

  3. R. A. Pitts, X. Bonnin, F. Escourbiac, H. Frerichs, J. P. Gunn, T. Hirai, A. S. Kukushkin, E. Kaveeva, M. A. Miller, D. Moulton, V. Rozhansky, I. Senichenkov, E. Sytova, O. Schmitz, P. C. Stangeby, et al., Nucl. Mater. Energy 20, 100696 (2019).

  4. V. P. Budaev, S. D. Fedorovich, Yu. V. Martynenko, M. V. Lukashevskii, M. K. Gubkin, A. V. Karpov, A. V. Lazukin, E. A. Shestakov, D. I. Kavyrshin, and K. S. Rogozin, Yad. Fiz. Inzhin. 9, 283 (2018).

    Google Scholar 

  5. V. P. Budaev, S. D. Fedorovich, M. V. Lukashevskii, Yu. V. Martynenko, M. K. Gubkin, A. V. Karpov, A. V. Lazukin, and E. A. Shestakov, Vopr. At. Nauki Tekh., Ser.: Termoyad. Sintez 40 (3), 23 (2017).

    Google Scholar 

  6. A. A. Belevtsev, D. I. Kavyrshin, M. A. Sargsyan, V. F. Chinnov, A. V. Efimov, and V. V. Shcherbakov, J. Phys. D: Appl. Phys. 51, 484002 (2018). https://doi.org/10.1088/1361-6463/aadccc

  7. J. W. Coenen et al., Nucl. Fusion 53, 073043 (2013).

  8. A. R. Nemets, V. A. Krupin, L. A. Klyuchnikov, M. R. Nurgaliev, V. I. Troinov, I. A. Zemtsov, I. S. Obraztsov, and D. S. Sergeev, Vopr. At. Nauki Tekh., Ser.: Termoyad. Sintez 40 (2), 23 (2017).

    Google Scholar 

  9. M. Sertoli, P. Carvalho, C. Giroud, and S. Menmuir, J. Plasma Phys. 85, 905850504 (2019). https://doi.org/10.1017/S0022377819000618

  10. G. G. van Eden, V. Kvon, M. C. M. van de Sanden, and T. W. Morgan, Nat. Commun. (2017). https://doi.org/10.1038/s41467-017-00288-y

  11. T. W. Morgan et al., Plasma Phys. Control. Fusion 60, 014025 (2018).

  12. A. Eksaeva, E. Marenkov, D. Borodin, A. Kreter, M. Reinhart, A. Kirschner, J. Romazanov, A. Terra, S. Brezinsek, and K. Nordlund, Nucl. Mater. Energy 12, 253 (2017).

    Article  Google Scholar 

  13. S. Brezinsek et al., Phys. Scr., 014052 (2017).

  14. I. I. Sobelman, Introduction to the Theory of Atomic Spectra (Fizmatlit, Moscow, 1963; Pergamon, Oxford, 1972).

  15. V. N. Ochkin, Spectroscopy of Low-Temperature Plasma (Fizmatlit, Moscow, 2006) [in Russian].

    Google Scholar 

  16. L. M. Biberman, V. S. Vorob’ev, and I. T. Yakubov, Kinetics of Nonequilibrium Low-Temperature Plasma (Nauka, Moscow, 1982; Springer, Berlin, 1987).

  17. A. Kramida, Yu. Ralchenko, J. Reader, and NIST ASD Team, NIST Atomic Spectra Database, ver. 5.9 (Natl. Inst. Stand. Technol., Gaithersburg, MD, 2021). https://physics.nist.gov/asd. https://doi.org/10.18434/T4W30F

    Book  Google Scholar 

  18. S. Dushman, Scientific Foundations of Vacuum Technique, 2nd ed. (Wiley, New York, 1962).

    Google Scholar 

Download references

Funding

The spectroscopic study was supported by the Russian Science Foundation, grant no. 21-79-10281, “High-resolution spectroscopy for near-surface plasma diagnostics in the interaction of powerful flows of nonequilibrium magnetized plasma with a wall”; the works on plasma generation in PLM were supported by project no. 223 EOTP-UTP.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. I. Kavyrshin or V. P. Budaev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Moshkin

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kavyrshin, D.I., Budaev, V.P., Fedorovich, S.D. et al. Measuring Impurity Concentration in Near Wall Plasma During Tests of Prototypes of the First Wall of Fusion Reactor in PLM Facility. Phys. Atom. Nuclei 86, 1667–1672 (2023). https://doi.org/10.1134/S1063778823070104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778823070104

Keywords:

Navigation