Skip to main content
Log in

Metal-Loaded Liquid Organic Scintillators for Recording Rare Events: Light Yield at High Metal Concentration

  • ELEMENTARY PARTICLES AND FIELDS/Experiment
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Metal-loaded liquid organic scintillators (MeLS) are discussed from the point of view of light yield at high metal loading (Gd, Nd, Zr, In). It is shown that, when metal \(\beta\)-diketonates are introduced into the scintillator, its light yield is always lower than when carboxylates are used, which is explained by the structural difference between these complexes. The nature of the metal in some cases (Nd) also affects the light attenuation length and, consequently, the MeLS light yield. The composition of the solvent (the fraction of aromatics in the main solvent) and the degree of purification of the introduced metal complex also have a significant effect on the light yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

REFERENCES

  1. F. Reines and C. L. Cowan, Jr., Phys. Rev. 90, 492 (1953);

    Article  ADS  CAS  Google Scholar 

  2. Phys. Rev. 92, 830 (1953).

  3. Y. Fucuda, S. Moriyama, K. Hiraide, I. Ogawa, T. Gunji, R. Hayami, S. Tsukadaw, and S. Kurosawa, J. Phys.: Conf. Ser. 1468, 012139 (2020). https://doi.org/10.1088/1742-6596/1468/1/012139

  4. L. B. Bezrukov, G. Ya. Novikova, E. A. Yanovich, B. V. Lokshin, V. P. Morgalyuk, A. I. Kostylev, and N. A. Korsakova, Russ. J. Inorg. Chem. 66, 421 (2021). https://doi.org/10.1134/S0036023621030037

    Article  CAS  Google Scholar 

  5. I. R. Barabanov, L. B. Bezrukov, A. V. Veresnikova, Yu. M. Gavriluk, V. I. Gurentsov, V. V. Kazalov, V. V. Kuzminov, G. Ya. Novikova, S. V. Semenov, V. V. Sinev, G. O. Tsvetkov, and E. A. Yanovich, Phys. Part. Nucl. 82, 89 (2019). https://doi.org/10.1134/S1063778819020029

    Article  CAS  Google Scholar 

  6. L. B. Bezrukov, G. Ya. Novikova, E. A. Yanovich, A. I. Kostylev, N. A. Korsakova, E. K. Legin, A. E. Miroslavov, M. D. Karavan, B. V. Lokshin, and V. P. Morgalyuk, Russ. J. Inorg. Chem. 63, 1564 (2018). https://doi.org/10.1134/S0036023618120045

    Article  CAS  Google Scholar 

  7. I. R. Barabanov, L. B. Bezrukov, G. Ya. Novikova, and E. A. Yanovich, Phys. Part. Nucl. Lett. 15, 630 (2018).

    Article  CAS  Google Scholar 

  8. I. R. Barabanov, L. B. Bezrukov, G. Ya. Novikova, and E. A. Yanovich, Instrum. Exp. Tech. 60, 533 (2017). https://doi.org/10.1134/S0020441217030162

    Article  CAS  Google Scholar 

  9. Z. Chang, J. Benziger, A. Garnov, C. Grieb, R. L. Hahn, R. S. Raghavan, and M. Yeh, Nucl. Phys. B 221, 337 (2011). https://doi.org/10.1016/j.nuclphysbps.2011.09.036

    Article  CAS  Google Scholar 

  10. I. R. Barabanov, L. B. Bezrukov, V. I. Gurentsov, G. Ya. Novikova, V. V. Sinev, and E. A. Yanovich, Phys. At. Nucl. 85, 402 (2022). https://doi.org/10.1134/S1063778822040056

    Article  CAS  Google Scholar 

  11. M. Apollonio, A. Baldini, and C. Bemporad, Phys. Lett. B 420, 397 (1998). https://doi.org/10.1016/S0370-2693(97)01476-7

    Article  ADS  CAS  Google Scholar 

  12. C. Aberle, C. Buck, B. Gramish, F. X. Hartmann, M. Lindner, S. Schönert, U. Schwan, S. Wagner, and H. Watanabe, J. Instrum. 7, 06008 (2012). https://doi.org/10.1088/1748-0221/7/06/P06008

    Article  CAS  Google Scholar 

  13. H. S. Kim et al. (RENO Collab.), Part. Phys. Proc. 265, 93 (2015).

    Google Scholar 

  14. S. H. Kim et al. (RENO Collab.), arXiv: 1609.09483v1 [physics.ins-det].

  15. Y. J. Ko et al. (NEOS Collab.), Phys. Rev. Lett. 118, 121802 (2017).

  16. A. Abramov, A. Chepurnov, A. Etenko, M. Gromov, A. Konstantinov, D. Kuznetsov, E. Litvinovich, G. Lukyanchenko, I. Machulin, A. Murchenko, A. Nemeryuk, R. Nugmanov, B. Obinyakov, A. Oralbaev, A. Rastimeshin, M. Skorokhvatov, et al., arXiv: 2112.09372 [physics.ins-det]. https://doi.org/10.48550/arXiv.2112.09372

  17. H. Almazán et al. (STEREO Collab.), Phys. Rev. D 102, 052002 (2020). https://doi.org/10.1103/PhysRevD.102.052002

  18. A. P. Serebrov, V. G. Ivochkin, R. M. Samoilov, A. K. Fomin, V. G. Zinov’ev, S. S. Volkov, V. L. Golovtsov, N. V. Gruzinskii, P. V. Neustoev, V. V.Fedorov, I. V. Parshin, A. A. Gerasimov, M. E. Zaitsev, M. E. Chaikovskii, A. M. Gagarskii, A. L. Petlin, et al., Tech. Phys. 68 (2023, in press)

  19. W. Beriguete, J. Cao, Y. Ding, S. Hans, K. M. Heeger, L. Hu, A. Huang, K.-B. Luk, I. Nemchenok, M. Qi, R. Rosero, H. Sun, R. Wang, Y. Wang, L. Wen, Y. Yang, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 763, 82 (2014). https://doi.org/10.1016/j.nima.2014.05.119

    Article  CAS  Google Scholar 

  20. G. Ya. Novikova, M. V. Solovyova, and E. A. Yanovich, Phys. At. Nucl. 83, 75 (2020). https://doi.org/10.31857/S0044002720010109

    Article  CAS  Google Scholar 

  21. I. R. Barabanov, A. V. Veresnikova, A. A. Moiseeva, V. P. Morgalyuk, G. Ya. Novikova, and E. A. Yanovich, Phys. At. Nucl. 86, 119 (2023). https://doi.org/10.1134/S1063778823020035

    Article  CAS  Google Scholar 

  22. C. Buck, F. X. Hartmann, T. Lasserre, D. Motta, S. Schonert, and U. Schwan, J. Lumin. 106, 57 (2004). https://doi.org/10.1016/S0022-2313(03)00134-010.1016/S0022-2313(03)00134-0

    Article  CAS  Google Scholar 

  23. G. Ya. Novikova, V. P. Morgalyuk, and E. A. Yanovich, Russ. J. Inorg. Chem. 66, 1161 (2021). https://doi.org/10.31857/S0044457X21080183

    Article  CAS  Google Scholar 

  24. Y. Fukuda, S. Moriyama, and I. Ogawa, Nucl. Instrum. Methods Phys. Res., Sect. A 732, 397 (2013). https://doi.org/10.1016/j.nima.2013.06/04310.1016/j.nima.2013.06/043

  25. L. B. Bezrukov, N. I. Bakulina, N. S. Ikonnikov, V. P. Morgalyuk, G. Ya. Novikova, and A. S. Chepurnov, Preprint INR RAS No. 1382/2014 (Inst. Nucl. Res. RAS, Moscow, 2014).

    Google Scholar 

  26. G. Ya. Novikova, N. I. Bakulina, and V. P. Morgalyuk, Russ. J. Inorg. Chem. 59, 389 (2014). https://doi.org/10.1134/S0036023614030164

    Article  CAS  Google Scholar 

  27. G. Ya. Novikova, N. I. Bakulina, A. V. Vologzhanina, B. V. Lokshin, V. P. Morgalyuk, Russ. J. Inorg. Chem. 61, 257 (2016). https://doi.org/10.7868/S0044457X1602015X

    Article  CAS  Google Scholar 

  28. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds (Wiley, New York, 1986).

    Google Scholar 

Download references

Funding

The work is supported by the state assignment of the Ministry of Science and Higher Education of the Russian Federation, project no. FZZR-2022-0004. In this work we used the research equipment of the Center for Studying Molecular Structure of the Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ya. Novikova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Oborin

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barabanov, I.R., Veresnikova, A.V., Isupova, Z.Y. et al. Metal-Loaded Liquid Organic Scintillators for Recording Rare Events: Light Yield at High Metal Concentration. Phys. Atom. Nuclei 86, 1286–1295 (2023). https://doi.org/10.1134/S1063778823060108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778823060108

Navigation