Skip to main content
Log in

Is It Possible to Estimate the Parameters of the 2D Evolution of the Space Metric Signature with Energy from the Correlations of the Azimuthal Characteristics of Particles?

  • ELEMENTARY PARTICLES AND FIELDS/Experiment
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The coplanarity of subcores in \(\gamma\)-ray–hadron families of the so-called long-range near-side ‘‘ridge’’ effect discovered by the CMS Collaboration at the LHC can be described in terms of the FANSY 2.0 model, which reproduces the coplanar generation of the most energetic particles in hadron interactions at superhigh energies. Coplanar generation can be explained, in particular, by the hypothesis of change of the signature of the metric of the space–time continuum, namely, a fluctuation transformation of the basic three-dimensional state into two-dimensional one (3D \(\leftrightarrow\) 2D). A method is proposed for experimental verification of this hypothesis by studying the azimuthal correlations of different particles in hadron interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. A. S. Borisov et al. (Pamir Collab.), in Proceedings of the 4th ISVHECRI Beijing, 1986, p. 4.

  2. I. P. Ivanenko and B. L. Kanevsky, JETP Lett. 50, 2125 (1992).

    Google Scholar 

  3. V. V. Kopenkin, A. K. Managadze, I. V. Rakobolskaya, and T. M. Roganova, Phys. Rev. D 52, 2766 (1995).

    Article  ADS  CAS  Google Scholar 

  4. Pamir Collab., Preprint INP MSU No. 89-67/144 (Inst. Nucl. Phys. MSU, Moscow, 1989).

    Google Scholar 

  5. A. S. Borisov, R. A. Mukhamedshin, V. S. Puchkov, S. A. Slavatinsky, and G. B. Zhdanov Nucl. Phys. B (Proc. Suppl.) 97, 118 (2001).

    Article  ADS  CAS  Google Scholar 

  6. L. Xue, Z. Q. Dai, and J. Y. Li, in Proceedings of the 26th ICRC Salt Lake City, 1999, Vol. 1, p. 127.

  7. A. V. Apanasenko, N. A. Dobrotin, L. A. Goncharova, K. A. Kotelnikov, and N. G. Polukhina, in Proceedings of the 15th ICRC, Plovdiv, 1977, Vol. 7, p. 220.

  8. V. I. Osedlo, I. V. Rakobolskaya, V. I. Galkin, A. K. Managadze, L. G. Sveshnikova, L. A. Goncharova, K. A. Kotelnikov, A. G. Martynov, and N. G. Polukhina, in Proceedings of the 27th ICRC, Hamburg, 2001, Vol. 1, p. 1426.

  9. J. N. Capdevielle, J. Phys. G 14, 503 (1988).

    Article  ADS  CAS  Google Scholar 

  10. R. A. Mukhamedshin, J. High Energy Phys. 0505, 049 (2005).

  11. R. A. Mukhamedshin, Nucl. Phys. B Proc. Suppl. 196, 98 (2009).

    Article  ADS  CAS  Google Scholar 

  12. A. K. Managadze and R. A. Mukhamedshin, Bull. Russ. Acad. Sci.: Phys. 77, 1315 (2013).

    Article  CAS  Google Scholar 

  13. I. I. Royzen, Mod. Phys. Lett. A 9, 3517 (1994).

    Article  ADS  Google Scholar 

  14. J. N. Capdevielle, Nucl. Phys. B Proc. Suppl. 175, 137 (2008).

    Article  ADS  Google Scholar 

  15. T. S. Yuldashbaev, Kh. Nuritdinov, and V. M. Chudakov, Nuovo Cim. C 24, 569 (2001).

    ADS  Google Scholar 

  16. R. A. Mukhamedshin, Nucl. Phys. B Proc. Suppl. 75, 141 (1999).

    Article  ADS  Google Scholar 

  17. T. Wibig, hep-ph/0003230.

  18. L. Anchordoqui, D. C. Dai, M. Fairbairn, G. Landsberg, and D. Stojkovic, Mod. Phys. Lett. A 27, 1250021 (2012).

  19. D. Stojkovic, arXiv: 1406.2696v1 [gr-qc].

  20. The CMS Collab., J. High Energy Phys. 1009, 091 (2010).

  21. R. A. Mukhamedshin, Eur. Phys. J. Plus 134, 584 (2019).

    Article  CAS  Google Scholar 

  22. R. A. Mukhamedshin and T. Sadykov, J. Phys.: Conf. Ser. 1181, 012089 (2019).

  23. R. A. Mukhamedshin, Eur. Phys. J. C 82, 155 (2022).

    Article  ADS  CAS  Google Scholar 

  24. R. A. Mukhamedshin, Bull. Russ. Acad. Sci.: Phys. 85, 402 (2021).

    Article  CAS  Google Scholar 

  25. R. A. Mukhamedshin, Eur. Phys. J. C 79, 441 (2019).

    Article  ADS  Google Scholar 

  26. R. A. Mukhamedshin, Bull. Russ. Acad. Sci.: Phys. 87, 900 (2023).

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Mukhamedshin.

Ethics declarations

The author of this work declares that he has no conflicts of interest.

Additional information

Translated by E. Oborin

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukhamedshin, R.A. Is It Possible to Estimate the Parameters of the 2D Evolution of the Space Metric Signature with Energy from the Correlations of the Azimuthal Characteristics of Particles?. Phys. Atom. Nuclei 86, 1281–1285 (2023). https://doi.org/10.1134/S1063778823060091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778823060091

Navigation