Skip to main content
Log in

Machine Learning Application for Particle Identification in MPD

  • ELEMENTARY PARTICLES AND FIELDS/Experiment
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

This work presents results of the first tests of machine learning application using gradient boosting on oblivious decision trees to particle identification problem in Multi Purpose Detector (MPD) experiment on Nuclotron based Ion Collider fAcility (NICA) at Joint Institute for Nuclear Research. Categorical boosting (CatBoost) implementation of a gradient boosting on decision trees has been used. Particle identification was based on the information provided by the time projection chamber (TPC) and the time-of-flight (TOF) subdetectors. In the study three various Monte-Carlo datasets of measurements from TPC and TOF were simulated and used within CatBoost classifiers training and testing. The comparison was made with the \(n\)-sigma method which is currently used at MPD software. Gradient boosting shows better efficiency in case of small and large momentum values (\(p<0.7\) GeV\(/c\) and \(p>1.5\) GeV\(/c\)). This demonstrated that machine learning methods are well suited to address the particle identification problem in MPD experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

REFERENCES

  1. G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N. Tishby, L. Vogt-Maranto, and L. Zdeborová, Rev. Mod. Phys. 91, 045002 (2019).

  2. V. A. Roudnev, S. P. Merts, S. A. Nemnyugin, and M. M. Stepanova, J. Phys.: Conf. Ser. 1479, 012043 (2020).

  3. D. Derkach, M. Hushchyn, T. Likhomanenko, A. Rogozhnikov, N. Kazeev, V. Chekalina, R. Neychev, S. Kirillov, F. Ratnikov, and on behalf of the LHCb Collab., J. Phys.: Conf. Ser. 1085, 042038 (2018).

  4. I. Altsybeev, E. Andronov, and D. Prokhorova, J. Phys.: Conf. Ser. 1690, 012119 (2020).

  5. V. Abgaryan, R. Acevedo Kado, S. V. Afanasyev, G. N. Agakishiev, E. Alpatov, G. Altsybeev, M. Alvarado Hernández, S. V. Andreeva, T. V. Andreeva, E. V. Andronov, N. V. Anfimov, A. A. Aparin, V. I. Astakhov, E. Atkin, T. Aushev, G. S. Averichev, et al., Eur. Phys. J. A 58, 140 (2022).

    Article  ADS  Google Scholar 

  6. V. D. Kekelidze, R. Lednicky, V. A. Matveev, I. N. Meshkov, A. S. Sorin, and G. V. Trubnikov, J. Phys.: Conf. Ser. 668, 012023 (2016).

  7. A. Averyanov, A. Bazhazhin, V. F. Chepurnov, and V. V. Chepurnov, Technical Design Report (rev. 07) (Labor. High Energy Phys., JINR, Dubna, 2018).

  8. V. A. Babkin, MPD NICA Technical Design Report of the Time of Flight System (TOF) (TOF/MPD Collab. JINR, Dubna, 2015).

  9. S. B. Kotsiantis, Informatica 31, 249 (2007).

    MathSciNet  Google Scholar 

  10. A. V. Dorogush, V. Ershov, and A. Gulin, arXiv: 1810.11363.

  11. T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, in Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery Data Mining (Association for Computing Machinery, New York, 2019), p. 2623.

  12. The CatBoost Team. Parameter Tuning—catboost.ai. https://catboost.ai/en. Accessed Jan 24, 2023.

  13. Gh. Adam, M. Bashashin, D. Belyakov, M. Kirakosyan, M. Matveev, D. Podgainy, T. Sapozhnikova, O. Streltsova, Sh. Torosyan, M. Vala, et al., CEUR Workshop Proc. 2267, 638 (2018).

    Google Scholar 

  14. Yu. Butenko, M. Ćosić, A. Nechaevskiy, D. Podgainy, I. Rahmonov, A. Stadnik, O. Streltsova, and M. Zuev, in Proceedings of 6th International Workshop on Deep Learning in Computational Physics 2022 (2022), p. 429.

  15. I. Belikov, K. Safar’ik, T. Kuhr, M. Ivanov, and P. Z. Khristov, in Computing in High Energy Physics and Nuclear Physics 2004 (2005), p. 423.

    Google Scholar 

  16. T. Trzciński, L. Graczykowski, and M. Glinka, in Advances in Intelligent Systems and Computing (Springer, 2019), p. 3.

    Google Scholar 

Download references

Funding

This work was done with support from the Russian Science Foundation under grant no. 22-72-10028.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. Papoyan, A. Aparin, A. Ayriyan, H. Grigorian, A. Korobitsin or A. Mudrokh.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papoyan, V., Aparin, A., Ayriyan, A. et al. Machine Learning Application for Particle Identification in MPD. Phys. Atom. Nuclei 86, 869–873 (2023). https://doi.org/10.1134/S1063778823050332

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778823050332

Navigation