Skip to main content
Log in

Equations of Quantum Relativistic Hydrodynamics and Soliton Solutions in Describing Nucleus–Nucleus Collisions

  • ELEMENTARY PARTICLES AND FIELDS/Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The equations of quantum relativistic hydrodynamics are derived from the Klein–Gordon equation. In the nonrelativistic semiclassical approximation, these equations reduce to the traditional equations of hydrodynamics of a perfect fluid. An analytic solution of hydrodynamic equations in the soliton approximation is found for a collision of nuclear layers in one- and two-dimensional cases. The importance of taking into account nonequilibrium processes is highlighted. The stages of compression, decompression, and expansion are considered by means of a single formula for layers with energies on the order of 10 MeV per nucleon. This reduction of solutions of hydrodynamic equations to soliton solutions was not considered earlier. A generalization to the two-dimensional case leads to the concept of rarefied-bubble formation at the expansion stage. As to the approach itself, it can also be used in other realms of physics in calculations for nonlinear dynamics of vibrations of complex systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. O. Klein, Z. Phys. 37, 895 (1926).

    Article  ADS  Google Scholar 

  2. W. Gordon, Z. Phys. 40, 117 (1926).

    Article  ADS  Google Scholar 

  3. E. Madelung, Z. Phys. 40, 332 (1926).

    Google Scholar 

  4. N. Bohr and J. A. Wheeler, Phys. Rev. 56, 426 (1939).

    Article  ADS  Google Scholar 

  5. H. Stöcker and W. Greiner, Phys. Rep. 137, 277 (1986).

    Article  ADS  Google Scholar 

  6. A. T. D’yachenko, K. A. Gridnev, and W. Greiner, J. Phys. G 40, 085101 (2013).

    Article  ADS  Google Scholar 

  7. A. T. D’yachenko and I. A. Mitropolsky, Phys. At. Nucl. 83, 558 (2020).

    Article  Google Scholar 

  8. A. T. D’yachenko and I. A. Mitropolsky, Bull. Russ. Acad. Sci.: Phys. 84, 391 (2020).

    Article  MathSciNet  Google Scholar 

  9. A. T. D’yachenko and I. A. Mitropolsky, Phys. Part. Nucl. 53, 505 (2022).

    Article  Google Scholar 

  10. A. T. D’yachenko, K. A. Gridnev, and I. A. Mitropolsky, Bull. Russ. Acad. Sci.: Phys. 79, 858 (2015).

    Article  Google Scholar 

  11. A. T. D’yachenko and I. A. Mitropolsky, Bull. Russ. Acad. Sci.: Phys. 81, 1521 (2017).

    Article  Google Scholar 

  12. A. T. D’yachenko and I. A. Mitropolsky, EPJ Web Conf. 204, 03018 (2019).

  13. A. T. D’yachenko and I. A. Mitropolsky, Phys. At. Nucl. 82, 1641 (2019).

    Article  Google Scholar 

  14. D. J. Korteweg and G. de Vries, Philos. Mag. 39, 422 (1895).

    Article  MathSciNet  Google Scholar 

  15. A. T. D’yachenko, in Proceedings of the International Conference on Nuclear Physics: Nuclear Shells—50 Years, Dubna, April 21–24, 1999, Ed. by Yu. Ts. Oganessian and R. Kalpakchieva (World Scientific, Singapore, 2000), p. 492.

  16. A. T. D’yachenko and I. A. Mitropolsky, Bull. Russ. Acad. Sci.: Phys. 86, 962 (2022).

    Article  Google Scholar 

  17. R. J. Siemens and H. A. Bethe, Phys. Rev. Lett. 18, 704 (1967).

    Article  ADS  Google Scholar 

  18. C. Y. Wong, Ann. Phys. 77, 279 (1973).

    Article  ADS  Google Scholar 

  19. J. Decharge, J.-F. Beger, K. Dietrich, and M. S. Weiss, Phys. Lett. B 451, 275 (1999).

    Article  ADS  Google Scholar 

  20. A. Mutschler, A. Lemasson, O. Sorlin, D. Bazin, C. Borcea, R. Borcea, Z. Dombradi, J.-P. Ebran, A. Gade, H. Iwasaki, E. Khan, A. Lepailleur, F. Recchia, T. Roger, F. Rotaru, D. Sohler, et al., Nat. Phys. 13, 152 (2017).

    Article  Google Scholar 

  21. X.-H. Fan, G.-C. Yong, and W. Zuo, Phys. Rev. C 99, 041601 (2019).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. T. D’yachenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’yachenko, A.T. Equations of Quantum Relativistic Hydrodynamics and Soliton Solutions in Describing Nucleus–Nucleus Collisions. Phys. Atom. Nuclei 86, 289–295 (2023). https://doi.org/10.1134/S1063778823030079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778823030079

Navigation