Skip to main content
Log in

Experimental Study of Mass–Energy Distribution of Fragments Produced in the \({}^{{90}}\text{Zr}+{}^{{90}}\)Zr Reaction Leading to the Formation of \({}^{{180}}\)Hg at Energies near the Coulomb Barrier

  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Mass–energy distributions of binary fragments produced in the \({}^{90}\textrm{Zr}+{}^{90}\)Zr reaction at the projectile-ion energy of 378 MeV were measured by means of the CORSET double-arm time-of-flight spectrometer. From a comparison of the mass–energy distributions measured in the present study with the distributions of fragments produced in the \({}^{36}\textrm{Ar}+{}^{144}\)Sm and \({}^{68}\textrm{Zn}+{}^{112}\)Sn reactions leading to the formation of the same compound system \({}^{180}\)Hg, it was found that the contribution of the fusion–fission process involving a compound nucleus to the total distribution of fission-like fragments was less than 20\(\%\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

REFERENCES

  1. R. Bass, Nuclear Reactions with Heavy Ions (Springer, New York, 1980).

    Google Scholar 

  2. V. V. Volkov, Phys. Rep. 44, 93 (1977).

    Article  ADS  Google Scholar 

  3. M. G. Itkis, E. Vardaci, I. M. Itkis, G. N. Knyazheva, and E. M. Kozulin, Nucl. Phys. A 944, 204 (2015).

    Article  ADS  Google Scholar 

  4. E. Vardaci, M. G. Itkis, I. M. Itkis, G. N. Knyazheva, and E. M. Kozulin, J. Phys. G 46, 103002 (2019).

    Article  ADS  Google Scholar 

  5. E. M. Kozulin, E. Vardaci, G. N. Knyazheva, A. A. Bogachev, S. N. Dmitriev, I. M. Itkis, A. G. Knyazev, T. A. Loktev, K. V. Novikov, E. A. Razinkov, O. V. Rudakov, S. V. Smirnov, W. Trzaska, and V. I. Zagrebaev, Phys. Rev. C 86, 044611 (2012).

    Article  ADS  Google Scholar 

  6. W. Q. Shen, J. Albinski, A. Gobbi, S. Gralla, K. D. Hildenbrand, N. Herrmann, J. Kuzminski, W. F. J. Müller, H. Stelzer, J. Töke, B. B. Back, S. Bjørnholm, and S. P. Sørensen, Phys. Rev. C 36, 115 (1987).

    Article  ADS  Google Scholar 

  7. V. I. Zagrebayev, A. V. Karpov, I. N. Mishustin, and W. Greiner, Phys. Rev. C 84, 044617 (2011).

    Article  ADS  Google Scholar 

  8. V. V. Saiko and A. V. Karpov, Phys. Rev. C 99, 014613 (2019).

    Article  ADS  Google Scholar 

  9. Yu. Ts. Oganessian and V. K. Utyonkov, Nucl. Phys. A 944, 62 (2015).

    Article  ADS  Google Scholar 

  10. D. Kumar, E. M. Kozulin, M. Cheralu, G. N. Knyazheva, I. M. Itkis, M. G. Itkis, K. V. Novikov, A. A. Bogachev, N. I. Kozulina, I. N. Diatlov, I. V. Pchelintsev, I. V. Vorobiev, T. Banerjee, Y. S. Mukhamejanov, A. N. Pan, V. V. Saiko, et al., Bull. Russ. Acad. Sci.: Phys. 84, 1001 (2020).

    Article  Google Scholar 

  11. A. A. Bogachev, E. M. Kozulin, G. N. Knyazheva, Yu. M. Itkis, K. V. Novikov, T. Banerjee, M. Cheralu, M. G. Itkis, E. Mukhamedzhanov, D. Kumar, A. N. Pan, I. V. Pchelintsev, I. V. Vorob’ev, V. Kh. Trzaska, E. Vardaci, A. di Nitto, et al., Bull. Russ. Acad. Sci.: Phys. 85, 1080 (2021).

    Article  Google Scholar 

  12. A. A. Bogachev, E. M. Kozulin, G. N. Knyazheva, I. M. Itkis, M. G. Itkis, K. V. Novikov, D. Kumar, T. Banerjee, I. N. Diatlov, M. Cheralu, V. V. Kirakosyan, Y. S. Mukhamejanov, A. N. Pan, I. V. Pchelintsev, R. S. Tikhomirov, I. V. Vorobiev, et al., Phys. Rev. C 104, 024623 (2021).

    Article  ADS  Google Scholar 

  13. E. M. Kozulin, G. N. Knyazheva, I. M. Itkis, M. G. Itkis, Y. S. Mukhamejanov, A. A. Bogachev, K. V. Novikov, V. V. Kirakosyan, D. Kumar, T. Banerjee, M. Cheralu, M. Maiti, R. Prajapat, R. Kumar, G. Sarkar, W. H. Trzaska, et al., Phys. Rev. C 105, 014607 (2022).

    Article  ADS  Google Scholar 

  14. E. M. Kozulin, E. Vardaci, W. H. Trzaska, A. A. Bogachev, I. M. Itkis, A. V. Karpov, G. N. Knyazheva, and K. V. Novikov, Phys. Lett. B 819, 136442 (2021).

    Article  Google Scholar 

  15. E. M. Kozulin, A. A. Bogachev, M. G. Itkis, Yu. M. Itkis, G. N. Knyazheva, N. A. Kondratiev, L. Krupa, I. V. Pokrovsky, and E. V. Prokhorova, Instrum. Exp. Tech. 51, 44 (2008).

    Article  Google Scholar 

  16. A. N. Andreyev, J. Elseviers, M. Huyse, P. van Duppen, S. Antalic, A. Barzakh, N. Bree, T. E. Cocolios, V. F. Comas, J. Diriken, D. Fedorov, V. Fedoseev, S. Franchoo, J. A. Heredia, O. Ivanov, U. Köster, et al., Phys. Rev. Lett. 105, 252502 (2010).

    Article  ADS  Google Scholar 

  17. V. E. Viola, K. Kwiatkowski, and M. Walker, Phys. Rev. C 31, 1550 (1985).

    Article  ADS  Google Scholar 

  18. W. W. Wilcke, J. R. Birkelund, A. D. Hoover, J. R. Huizenga, W. U. Schröder, V. E. Viola, K. L. Wolf, and A. C. Mignerey, Phys. Rev. C 22, 128 (1980).

    Article  ADS  Google Scholar 

  19. G. N. Knyazheva, E. M. Kozulin, R. N. Sagaidak, A. Yu. Chizhov, M. G. Itkis, N. A. Kondratiev, V. M. Voskressensky, A. M. Stefanini, B. R. Behera, L. Corradi, E. Fioretto, A. Gadea, A. Latina, S. Szilner, M. Trotta, S. Beghini, et al., Phys. Rev. C 75, 064602 (2007).

    Article  ADS  Google Scholar 

  20. G. Scamps and C. Simenel, Nature (London, U.K.) 564, 382 (2018).

    Article  ADS  Google Scholar 

  21. J. G. Keller, K.-H. Schmidt, G. Münzenberg, W. Reisdorf, H. G. Clerc, and C. C. Sahm, Nucl. Phys. A 452, 173 (1986).

    Article  ADS  Google Scholar 

  22. W. Reisdorf, F. P. Hessberger, K. D. Hildenbrand, S. Hofmann, G. Münzenberg, K.-H. Schmidt, J. H. R. Schneider, W. F. W. Schneider, K. Summerer, G. Wirth, J. V. Kratz, and K. Schlitt, Nucl. Phys. A 438, 212 (1985).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Kulkov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulkov, K.A., Kozulin, E.M., Bogachev, A.A. et al. Experimental Study of Mass–Energy Distribution of Fragments Produced in the \({}^{{90}}\text{Zr}+{}^{{90}}\)Zr Reaction Leading to the Formation of \({}^{{180}}\)Hg at Energies near the Coulomb Barrier. Phys. Atom. Nuclei 85, 756–762 (2022). https://doi.org/10.1134/S1063778823010325

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778823010325

Navigation